Cargando…
A novel method for financial distress prediction based on sparse neural networks with [Formula: see text] regularization
Corporate financial distress is related to the interests of the enterprise and stakeholders. Therefore, its accurate prediction is of great significance to avoid huge losses from them. Despite significant effort and progress in this field, the existing prediction methods are either limited by the nu...
Autores principales: | Chen, Ying, Guo, Jifeng, Huang, Junqin, Lin, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044388/ https://www.ncbi.nlm.nih.gov/pubmed/35492262 http://dx.doi.org/10.1007/s13042-022-01566-y |
Ejemplares similares
-
To [Formula: see text] , or not to [Formula: see text] : recent developments and comparisons of regularization schemes
por: Gnendiger, C., et al.
Publicado: (2017) -
Weak and Strong Type [Formula: see text] –[Formula: see text] Estimates for Sparsely Dominated Operators
por: Frey, Dorothee, et al.
Publicado: (2018) -
Realizing [Formula: see text]-regular Hyperproperties
por: Finkbeiner, Bernd, et al.
Publicado: (2020) -
[Formula: see text] -regularized recursive total least squares based sparse system identification for the error-in-variables
por: Lim, Jun-seok, et al.
Publicado: (2016) -
Observation of B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] and B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] decays
por: Tumasyan, A., et al.
Publicado: (2022)