Cargando…
Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories
[Image: see text] Passive permeability of a drug-like molecule is a critical property assayed early in a drug discovery campaign that informs a medicinal chemist how well a compound can traverse biological membranes, such as gastrointestinal epithelial or restrictive organ barriers, so it can perfor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044451/ https://www.ncbi.nlm.nih.gov/pubmed/35421313 http://dx.doi.org/10.1021/acs.jcim.1c01540 |
_version_ | 1784695108101210112 |
---|---|
author | Zhang, She Thompson, Jeff P. Xia, Junchao Bogetti, Anthony T. York, Forrest Skillman, A. Geoffrey Chong, Lillian T. LeBard, David N. |
author_facet | Zhang, She Thompson, Jeff P. Xia, Junchao Bogetti, Anthony T. York, Forrest Skillman, A. Geoffrey Chong, Lillian T. LeBard, David N. |
author_sort | Zhang, She |
collection | PubMed |
description | [Image: see text] Passive permeability of a drug-like molecule is a critical property assayed early in a drug discovery campaign that informs a medicinal chemist how well a compound can traverse biological membranes, such as gastrointestinal epithelial or restrictive organ barriers, so it can perform a specific therapeutic function. However, the challenge that remains is the development of a method, experimental or computational, which can both determine the permeation rate and provide mechanistic insights into the transport process to help with the rational design of any given molecule. Typically, one of the following three methods are used to measure the membrane permeability: (1) experimental permeation assays acting on either artificial or natural membranes; (2) quantitative structure–permeability relationship models that rely on experimental values of permeability or related pharmacokinetic properties of a range of molecules to infer those for new molecules; and (3) estimation of permeability from the Smoluchowski equation, where free energy and diffusion profiles along the membrane normal are taken as input from large-scale molecular dynamics simulations. While all these methods provide estimates of permeation coefficients, they provide very little information for guiding rational drug design. In this study, we employ a highly parallelizable weighted ensemble (WE) path sampling strategy, empowered by cloud computing techniques, to generate unbiased permeation pathways and permeability coefficients for a set of drug-like molecules across a neat 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine membrane bilayer. Our WE method predicts permeability coefficients that compare well to experimental values from an MDCK-LE cell line and PAMPA assays for a set of drug-like amines of varying size, shape, and flexibility. Our method also yields a series of continuous permeation pathways weighted and ranked by their associated probabilities. Taken together, the ensemble of reactive permeation pathways, along with the estimate of the permeability coefficient, provides a clearer picture of the microscopic underpinnings of small-molecule membrane permeation. |
format | Online Article Text |
id | pubmed-9044451 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90444512022-04-27 Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories Zhang, She Thompson, Jeff P. Xia, Junchao Bogetti, Anthony T. York, Forrest Skillman, A. Geoffrey Chong, Lillian T. LeBard, David N. J Chem Inf Model [Image: see text] Passive permeability of a drug-like molecule is a critical property assayed early in a drug discovery campaign that informs a medicinal chemist how well a compound can traverse biological membranes, such as gastrointestinal epithelial or restrictive organ barriers, so it can perform a specific therapeutic function. However, the challenge that remains is the development of a method, experimental or computational, which can both determine the permeation rate and provide mechanistic insights into the transport process to help with the rational design of any given molecule. Typically, one of the following three methods are used to measure the membrane permeability: (1) experimental permeation assays acting on either artificial or natural membranes; (2) quantitative structure–permeability relationship models that rely on experimental values of permeability or related pharmacokinetic properties of a range of molecules to infer those for new molecules; and (3) estimation of permeability from the Smoluchowski equation, where free energy and diffusion profiles along the membrane normal are taken as input from large-scale molecular dynamics simulations. While all these methods provide estimates of permeation coefficients, they provide very little information for guiding rational drug design. In this study, we employ a highly parallelizable weighted ensemble (WE) path sampling strategy, empowered by cloud computing techniques, to generate unbiased permeation pathways and permeability coefficients for a set of drug-like molecules across a neat 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine membrane bilayer. Our WE method predicts permeability coefficients that compare well to experimental values from an MDCK-LE cell line and PAMPA assays for a set of drug-like amines of varying size, shape, and flexibility. Our method also yields a series of continuous permeation pathways weighted and ranked by their associated probabilities. Taken together, the ensemble of reactive permeation pathways, along with the estimate of the permeability coefficient, provides a clearer picture of the microscopic underpinnings of small-molecule membrane permeation. American Chemical Society 2022-04-14 2022-04-25 /pmc/articles/PMC9044451/ /pubmed/35421313 http://dx.doi.org/10.1021/acs.jcim.1c01540 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Zhang, She Thompson, Jeff P. Xia, Junchao Bogetti, Anthony T. York, Forrest Skillman, A. Geoffrey Chong, Lillian T. LeBard, David N. Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title | Mechanistic Insights into Passive
Membrane Permeability
of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title_full | Mechanistic Insights into Passive
Membrane Permeability
of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title_fullStr | Mechanistic Insights into Passive
Membrane Permeability
of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title_full_unstemmed | Mechanistic Insights into Passive
Membrane Permeability
of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title_short | Mechanistic Insights into Passive
Membrane Permeability
of Drug-like Molecules from a Weighted Ensemble of Trajectories |
title_sort | mechanistic insights into passive
membrane permeability
of drug-like molecules from a weighted ensemble of trajectories |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044451/ https://www.ncbi.nlm.nih.gov/pubmed/35421313 http://dx.doi.org/10.1021/acs.jcim.1c01540 |
work_keys_str_mv | AT zhangshe mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT thompsonjeffp mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT xiajunchao mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT bogettianthonyt mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT yorkforrest mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT skillmanageoffrey mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT chonglilliant mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories AT lebarddavidn mechanisticinsightsintopassivemembranepermeabilityofdruglikemoleculesfromaweightedensembleoftrajectories |