Cargando…
Rapid cyclic ion mobility separations of monosaccharide building blocks as a first step toward a high-throughput reaction screening platform for carbohydrate syntheses
Herein we present a new high-throughput screening method for carbohydrate syntheses based on cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations. We rapidly resolved the α/β anomers for carbohydrates with varying protecting groups after only 5 m of cIMS-MS separation and a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044565/ https://www.ncbi.nlm.nih.gov/pubmed/35494126 http://dx.doi.org/10.1039/d1ra08746k |
Sumario: | Herein we present a new high-throughput screening method for carbohydrate syntheses based on cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations. We rapidly resolved the α/β anomers for carbohydrates with varying protecting groups after only 5 m of cIMS-MS separation and also detected their respective unwanted anomeric impurities at levels lower than 2%. All experiments were performed in 1 minute of total acquisition time demonstrating our method's high-throughput nature. Our methodology was also extended to the separation of an isomeric mixtures of two protected disaccharides illustrating its utility beyond only monosaccharides. We envision our presented workflow as a first step toward the development of a high-throughput screening platform for the rapid and sensitive detection of α/β anomeric selectivities and for trace isomeric/isobaric impurities. |
---|