Cargando…
Cooking outdoors or with cleaner fuels does not increase malarial risk in children under 5 years: a cross-sectional study of 17 sub-Saharan African countries
BACKGROUND: Smoke from solid biomass cooking is often stated to reduce household mosquito levels and, therefore, malarial transmission. However, household air pollution (HAP) from solid biomass cooking is estimated to be responsible for 1.67 times more deaths in children aged under 5 years compared...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044678/ https://www.ncbi.nlm.nih.gov/pubmed/35477567 http://dx.doi.org/10.1186/s12936-022-04152-3 |
Sumario: | BACKGROUND: Smoke from solid biomass cooking is often stated to reduce household mosquito levels and, therefore, malarial transmission. However, household air pollution (HAP) from solid biomass cooking is estimated to be responsible for 1.67 times more deaths in children aged under 5 years compared to malaria globally. This cross-sectional study investigates the association between malaria and (i) cleaner fuel usage; (ii) wood compared to charcoal fuel; and, (iii) household cooking location, among children aged under 5 years in sub-Saharan Africa (SSA). METHODS: Population-based data was obtained from Demographic and Health Surveys (DHS) for 85,263 children within 17 malaria-endemic sub-Saharan countries who were who were tested for malaria with a malarial rapid diagnostic test (RDT) or microscopy. To assess the independent association between malarial diagnosis (positive, negative), fuel type and cooking location (outdoor, indoor, attached to house), multivariable logistic regression was used, controlling for individual, household and contextual confounding factors. RESULTS: Household use of solid biomass fuels and kerosene cooking fuels was associated with a 57% increase in the odds ratio of malarial infection after adjusting for confounding factors (RDT adjusted odds ratio (AOR):1.57 [1.30–1.91]; Microscopy AOR: 1.58 [1.23–2.04]) compared to cooking with cleaner fuels. A similar effect was observed when comparing wood to charcoal among solid biomass fuel users (RDT AOR: 1.77 [1.54–2.04]; Microscopy AOR: 1.21 [1.08–1.37]). Cooking in a separate building was associated with a 26% reduction in the odds of malarial infection (RDT AOR: 0.74 [0.66–0.83]; Microscopy AOR: 0.75 [0.67–0.84]) compared to indoor cooking; however no association was observed with outdoor cooking. Similar effects were observed within a sub-analysis of malarial mesoendemic areas only. CONCLUSION: Cleaner fuels and outdoor cooking practices associated with reduced smoke exposure were not observed to have an adverse effect upon malarial infection among children under 5 years in SSA. Further mixed-methods research will be required to further strengthen the evidence base concerning this risk paradigm and to support appropriate public health messaging in this context. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12936-022-04152-3. |
---|