Cargando…

NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels

BACKGROUND: Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchy...

Descripción completa

Detalles Bibliográficos
Autores principales: Lückgen, Janine, Raqué, Elisabeth, Reiner, Tobias, Diederichs, Solvig, Richter, Wiltrud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044876/
https://www.ncbi.nlm.nih.gov/pubmed/35477424
http://dx.doi.org/10.1186/s13287-022-02843-x
_version_ 1784695197461905408
author Lückgen, Janine
Raqué, Elisabeth
Reiner, Tobias
Diederichs, Solvig
Richter, Wiltrud
author_facet Lückgen, Janine
Raqué, Elisabeth
Reiner, Tobias
Diederichs, Solvig
Richter, Wiltrud
author_sort Lückgen, Janine
collection PubMed
description BACKGROUND: Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchymal stromal cells (MSC) into chondrocytes in vitro will install the adequate biological mechano-competence of native articular chondrocytes (AC). METHODS: The mechano-competence of human MSC- and AC-derived neocartilage was compared during differentiation for up to 35 days. The neocartilage layer was subjected to physiologic dynamic loading in a custom-designed bioreactor and assayed for mechano-sensitive gene and pathway activation, extracellular matrix (ECM) synthesis by radiolabel incorporation, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Input from different pathways was tested by application of agonists or antagonists. RESULTS: MSC and AC formed neocartilage of similar proteoglycan content with a hardness close to native tissue. Mechano-stimulation on day 21 and 35 induced a similar upregulation of mechano-response genes, ERK phosphorylation, NO production and PGE(2) release in both groups, indicating an overall similar transduction of external mechanical signals. However, while AC maintained or enhanced proteoglycan synthesis after loading dependent on tissue maturity, ECM synthesis was always significantly disturbed by loading in MSC-derived neocartilage. This was accompanied by significantly higher COX2 and BMP2 background expression, > 100-fold higher PGE(2) production and a weaker SOX9 stimulation in response to loading in MSC-derived neocartilage. Anabolic BMP-pathway activity was not rate limiting for ECM synthesis after loading in both groups. However, NFκB activation mimicked the negative loading effects and enhanced PGE(2) production while inhibition of catabolic NFκB signaling rescued the load-induced negative effects on ECM synthesis in MSC-derived neocartilage. CONCLUSIONS: MSC-derived chondrocytes showed a higher vulnerability to be disturbed by loading despite proper differentiation and did not acquire an AC-like mechano-competence to cope with the mechanical stress of a physiologic loading protocol. Managing catabolic NFκB influences was one important adaptation to install a mechano-resistance closer to AC-derived neocartilage. This new knowledge asks for a more functional adaptation of MSC chondrogenesis, novel pharmacologic co-treatment strategies for MSC-based clinical cartilage repair strategies and may aid a more rational design of physical rehabilitation therapy after AC- versus MSC-based surgical cartilage intervention. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-02843-x.
format Online
Article
Text
id pubmed-9044876
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-90448762022-04-28 NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels Lückgen, Janine Raqué, Elisabeth Reiner, Tobias Diederichs, Solvig Richter, Wiltrud Stem Cell Res Ther Research BACKGROUND: Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchymal stromal cells (MSC) into chondrocytes in vitro will install the adequate biological mechano-competence of native articular chondrocytes (AC). METHODS: The mechano-competence of human MSC- and AC-derived neocartilage was compared during differentiation for up to 35 days. The neocartilage layer was subjected to physiologic dynamic loading in a custom-designed bioreactor and assayed for mechano-sensitive gene and pathway activation, extracellular matrix (ECM) synthesis by radiolabel incorporation, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Input from different pathways was tested by application of agonists or antagonists. RESULTS: MSC and AC formed neocartilage of similar proteoglycan content with a hardness close to native tissue. Mechano-stimulation on day 21 and 35 induced a similar upregulation of mechano-response genes, ERK phosphorylation, NO production and PGE(2) release in both groups, indicating an overall similar transduction of external mechanical signals. However, while AC maintained or enhanced proteoglycan synthesis after loading dependent on tissue maturity, ECM synthesis was always significantly disturbed by loading in MSC-derived neocartilage. This was accompanied by significantly higher COX2 and BMP2 background expression, > 100-fold higher PGE(2) production and a weaker SOX9 stimulation in response to loading in MSC-derived neocartilage. Anabolic BMP-pathway activity was not rate limiting for ECM synthesis after loading in both groups. However, NFκB activation mimicked the negative loading effects and enhanced PGE(2) production while inhibition of catabolic NFκB signaling rescued the load-induced negative effects on ECM synthesis in MSC-derived neocartilage. CONCLUSIONS: MSC-derived chondrocytes showed a higher vulnerability to be disturbed by loading despite proper differentiation and did not acquire an AC-like mechano-competence to cope with the mechanical stress of a physiologic loading protocol. Managing catabolic NFκB influences was one important adaptation to install a mechano-resistance closer to AC-derived neocartilage. This new knowledge asks for a more functional adaptation of MSC chondrogenesis, novel pharmacologic co-treatment strategies for MSC-based clinical cartilage repair strategies and may aid a more rational design of physical rehabilitation therapy after AC- versus MSC-based surgical cartilage intervention. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-02843-x. BioMed Central 2022-04-27 /pmc/articles/PMC9044876/ /pubmed/35477424 http://dx.doi.org/10.1186/s13287-022-02843-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Lückgen, Janine
Raqué, Elisabeth
Reiner, Tobias
Diederichs, Solvig
Richter, Wiltrud
NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title_full NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title_fullStr NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title_full_unstemmed NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title_short NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
title_sort nfκb inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044876/
https://www.ncbi.nlm.nih.gov/pubmed/35477424
http://dx.doi.org/10.1186/s13287-022-02843-x
work_keys_str_mv AT luckgenjanine nfkbinhibitiontoliftthemechanocompetenceofmesenchymalstromalcellderivedneocartilagetowardarticularchondrocytelevels
AT raqueelisabeth nfkbinhibitiontoliftthemechanocompetenceofmesenchymalstromalcellderivedneocartilagetowardarticularchondrocytelevels
AT reinertobias nfkbinhibitiontoliftthemechanocompetenceofmesenchymalstromalcellderivedneocartilagetowardarticularchondrocytelevels
AT diederichssolvig nfkbinhibitiontoliftthemechanocompetenceofmesenchymalstromalcellderivedneocartilagetowardarticularchondrocytelevels
AT richterwiltrud nfkbinhibitiontoliftthemechanocompetenceofmesenchymalstromalcellderivedneocartilagetowardarticularchondrocytelevels