Cargando…
Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection
Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network...
Autores principales: | Yoo, Reo, Rychel, Kevin, Poudel, Saugat, Al-bulushi, Tahani, Yuan, Yuan, Chauhan, Siddharth, Lamoureux, Cameron, Palsson, Bernhard O., Sastry, Anand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044949/ https://www.ncbi.nlm.nih.gov/pubmed/35306876 http://dx.doi.org/10.1128/msphere.00033-22 |
Ejemplares similares
-
Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
por: Chauhan, Siddharth M., et al.
Publicado: (2021) -
Pan-Genome Analysis of Transcriptional Regulation in Six Salmonella enterica Serovar Typhimurium Strains Reveals Their Different Regulatory Structures
por: Yuan, Yuan, et al.
Publicado: (2022) -
Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions
por: Kavvas, Erol S., et al.
Publicado: (2018) -
iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning
por: Rychel, Kevin, et al.
Publicado: (2020) -
Optimal dimensionality selection for independent component analysis of transcriptomic data
por: McConn, John Luke, et al.
Publicado: (2021)