Cargando…
Transcriptional Regulation and Functional Characterization of the Plasmid-Borne oqxAB Genes in Salmonella Typhimurium
Coexistence of oqxAB and aac(6′)-Ib-cr is often associated with the expression of fluoroquinolone resistance in Salmonella. The actual role of the plasmid-borne oqxAB gene and its regulatory mechanism compared to its chromosomally encoded counterpart in Klebsiella pneumoniae remain unclear We found...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045139/ https://www.ncbi.nlm.nih.gov/pubmed/35315694 http://dx.doi.org/10.1128/spectrum.02170-21 |
Sumario: | Coexistence of oqxAB and aac(6′)-Ib-cr is often associated with the expression of fluoroquinolone resistance in Salmonella. The actual role of the plasmid-borne oqxAB gene and its regulatory mechanism compared to its chromosomally encoded counterpart in Klebsiella pneumoniae remain unclear We found that cloning of oqxAB gene only or chromosomally encoded oqxABR (ABRc) locus did not lead to an increase of ciprofloxacin (CIP) minimum inhibitory concentration (MIC) in S. Typhimurium, while cloning of the plasmid-encoded oqxABR (ABRp) locus led to a 4-fold increase in CIP MIC, reaching 0.0065 μg/mL. The co-carriage of these constructs with aac(6′)-Ib-cr further increased the CIP MIC to 0.25 μg/mL in S. Typhimurium carrying aac(6′)-Ib-cr and ABRp. Analysis of the transcription start site sequences showed that the expression level of suppressor protein gene, oqxR, in strains carrying ABRp was lower than that of its chromosomal counterpart due to the truncated promoter region in ABRp. The lower expression of OqxR in ABRp led to the overexpression of OqxAB, which elevated CIP MIC and exhibited a synergistic antimicrobial effect with the aac(6′)-Ib-cr gene product to confer intermediate CIP (MIC = 0.25 μg/mL) in S. Typhimurium. Global transcriptional regulators in S. Typhimurium did not seem to play a role in regulating the plasmid-borne oqxAB genes. In conclusion, findings in this work showed that neither aac(6′)-Ib-cr nor oqxABRp, but the combination of both genes, could mediate intermediated resistance to fluoroquinolone in Salmonella. The truncated promoter region in the oqxR gene of the plasmid-encoded locus led to the constituted expression of oqxAB genes. IMPORTANCE The transferable mechanisms of quinolone resistance (TMQR) gene, oqxAB, has been widely detected in Salmonella and is commonly associated with aac(6′)-Ib-cr. It is thought to be associated with fluoroquinolone resistance, while its ancestor gene from K. pneumoniae is not. This study evaluated the actual role of the plasmid-borne oqxAB genes in Salmonella and showed that it was not able to mediate intermediated resistance to fluoroquinolone and only did so when it coexisted with aac(6′)-Ib-cr. Chromosomally encoded oqxABRc from K. pneumoniae was not able to mediate enhanced CIP MIC due to tight regulation by the suppressor oqxR. However, plasmid-encoded oqxABRp enabled oqxAB to be expressed constitutionally due to the truncated promoter region of oqxR, leading to lower expression of the suppressor oqxR. This study clarified the roles of oqxAB and aac(6′)-Ib-cr in mediating fluoroquinolone resistance in Salmonella and provides insights into the regulation of plasmid-encoded TMQR determinant, oqxAB. |
---|