Cargando…
Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae
Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045179/ https://www.ncbi.nlm.nih.gov/pubmed/35377232 http://dx.doi.org/10.1128/spectrum.02478-21 |
_version_ | 1784695256311136256 |
---|---|
author | Zhang, Xiaojian Zhao, Lihong Liu, Shichao Zhou, Jinglong Wu, Yajie Feng, Zili Zhang, Yalin Zhu, Heqin Wei, Feng Feng, Hongjie |
author_facet | Zhang, Xiaojian Zhao, Lihong Liu, Shichao Zhou, Jinglong Wu, Yajie Feng, Zili Zhang, Yalin Zhu, Heqin Wei, Feng Feng, Hongjie |
author_sort | Zhang, Xiaojian |
collection | PubMed |
description | Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. |
format | Online Article Text |
id | pubmed-9045179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-90451792022-04-28 Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae Zhang, Xiaojian Zhao, Lihong Liu, Shichao Zhou, Jinglong Wu, Yajie Feng, Zili Zhang, Yalin Zhu, Heqin Wei, Feng Feng, Hongjie Microbiol Spectr Research Article Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. American Society for Microbiology 2022-04-04 /pmc/articles/PMC9045179/ /pubmed/35377232 http://dx.doi.org/10.1128/spectrum.02478-21 Text en Copyright © 2022 Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Zhang, Xiaojian Zhao, Lihong Liu, Shichao Zhou, Jinglong Wu, Yajie Feng, Zili Zhang, Yalin Zhu, Heqin Wei, Feng Feng, Hongjie Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title | Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title_full | Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title_fullStr | Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title_full_unstemmed | Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title_short | Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae |
title_sort | identification and functional analysis of a novel hydrophobic protein vdhp1 from verticillium dahliae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045179/ https://www.ncbi.nlm.nih.gov/pubmed/35377232 http://dx.doi.org/10.1128/spectrum.02478-21 |
work_keys_str_mv | AT zhangxiaojian identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT zhaolihong identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT liushichao identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT zhoujinglong identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT wuyajie identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT fengzili identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT zhangyalin identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT zhuheqin identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT weifeng identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae AT fenghongjie identificationandfunctionalanalysisofanovelhydrophobicproteinvdhp1fromverticilliumdahliae |