Cargando…

Effects of Four Antibiotics on the Diversity of the Intestinal Microbiota

Oral antibiotics remain the therapy of choice for severe bacterial infections; however, antibiotic use disrupts the intestinal microbiota, increasing the risk of colonization by intestinal pathogens. Currently, our understanding of antibiotic-mediated disturbances of the microbiota remains at the le...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Ce, Feng, Shengyu, Huo, Fengjiao, Liu, Hailiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045271/
https://www.ncbi.nlm.nih.gov/pubmed/35311555
http://dx.doi.org/10.1128/spectrum.01904-21
Descripción
Sumario:Oral antibiotics remain the therapy of choice for severe bacterial infections; however, antibiotic use disrupts the intestinal microbiota, increasing the risk of colonization by intestinal pathogens. Currently, our understanding of antibiotic-mediated disturbances of the microbiota remains at the level of bacterial families or specific species, and little is known about the effect of antibiotics on potentially beneficial and pathogenic bacteria under the conditions of gut microbiota dysbiosis. Additionally, the question of whether the effects of antibiotics on the gut microbiota are temporary or permanent is controversial. In this study, we used 16S rRNA gene sequencing to evaluate the short- and long-term effects of ampicillin, vancomycin, metronidazole, and neomycin on the murine intestinal microbiota. We found that the changes in the intestinal microbiota reflected the antibiotics’ mechanisms of action and that dysbiosis of the intestinal microbiota led to competition between different bacterial communities. In particular, an increase in Enterococcus, which accompanies a decrease in probiotics-related genera such as Lactobacillus, is commonly seen across antibiotic treatments. In addition, we found that these oral antibiotics had long-term negative effects on the intestinal microbiota and promoted the development of antibiotic-resistant bacterial strains. These results indicate that ampicillin, vancomycin, metronidazole, and neomycin have long-term negative effects and can cause irreversible changes in the diversity of the intestinal microbiota, thereby increasing the risk of host disease. IMPORTANCE The intestinal microbiota is a dynamic community of hundreds of millions of microorganisms that play important roles in human health. However, treatment with antibiotics can disrupt the delicate balance of this community, leading to deleterious effects on the host such as inflammation and enhanced susceptibility to infection. To date, most studies of the effects of antibiotic treatment on the microbiota have focused on specific intestinal pathogens and bacterial families. However, few studies have investigated the effects of antibiotic treatment on the relative abundance of probiotic bacteria, pathogenic bacteria, and opportunistic bacterial pathogens in the gut.