Cargando…
Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies
Mobile sensing data processed using machine learning models can passively and remotely assess mental health symptoms from the context of patients’ lives. Prior work has trained models using data from single longitudinal studies, collected from demographically homogeneous populations, over short time...
Autores principales: | Adler, Daniel A., Wang, Fei, Mohr, David C., Choudhury, Tanzeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045602/ https://www.ncbi.nlm.nih.gov/pubmed/35476787 http://dx.doi.org/10.1371/journal.pone.0266516 |
Ejemplares similares
-
Identifying Mobile Sensing Indicators of Stress-Resilience
por: ADLER, DANIEL A., et al.
Publicado: (2021) -
Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability
por: He-Yueya, Joy, et al.
Publicado: (2020) -
Understanding Mental Health Clinicians’ Perceptions and Concerns Regarding Using Passive Patient-Generated Health Data for Clinical Decision-Making: Qualitative Semistructured Interview Study
por: Nghiem, Jodie, et al.
Publicado: (2023) -
A call for open data to develop mental health digital biomarkers
por: Adler, Daniel A., et al.
Publicado: (2022) -
Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks
por: Adler, Daniel A, et al.
Publicado: (2020)