Cargando…
A machine learning and clustering-based approach for county-level COVID-19 analysis
COVID-19 is a global pandemic threatening the lives and livelihood of millions of people across the world. Due to its novelty and quick spread, scientists have had difficulty in creating accurate forecasts for this disease. In part, this is due to variation in human behavior and environmental factor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045668/ https://www.ncbi.nlm.nih.gov/pubmed/35476849 http://dx.doi.org/10.1371/journal.pone.0267558 |
Sumario: | COVID-19 is a global pandemic threatening the lives and livelihood of millions of people across the world. Due to its novelty and quick spread, scientists have had difficulty in creating accurate forecasts for this disease. In part, this is due to variation in human behavior and environmental factors that impact disease propagation. This is especially true for regionally specific predictive models due to either limited case histories or other unique factors characterizing the region. This paper employs both supervised and unsupervised methods to identify the critical county-level demographic, mobility, weather, medical capacity, and health related county-level factors for studying COVID-19 propagation prior to the widespread availability of a vaccine. We use this feature subspace to aggregate counties into meaningful clusters to support more refined disease analysis efforts. |
---|