Cargando…
The complete chloroplast genome of Medicago arabica (Fabaceae)
Medicago arabica (Linnaeus, 1762) Huds. is an important annual legume forage that grows in a wide range of climates, from subtropical to temperate. This study aimed to sequence the chloroplast genome of M. arabica and compare it with other legumes. In this study, we sequenced the entire chloroplast...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045773/ https://www.ncbi.nlm.nih.gov/pubmed/35493715 http://dx.doi.org/10.1080/23802359.2022.2067498 |
Sumario: | Medicago arabica (Linnaeus, 1762) Huds. is an important annual legume forage that grows in a wide range of climates, from subtropical to temperate. This study aimed to sequence the chloroplast genome of M. arabica and compare it with other legumes. In this study, we sequenced the entire chloroplast genome of M. arabica, which has 125,056 base pairs. The total GC content of the chloroplast genome of M. arabica was 34.4%. From the 110 unique genes of the circular genome, 30 tRNA genes, four rRNA genes, and 76 protein-coding genes were successfully annotated. A maximum likelihood (ML) tree was constructed using the model species and 17 species of the Medicago genus. M. arabica was shown to be phylogenetically closely related to M. polymorpha. The nucleotide diversity of the chloroplast genome may provide valuable molecular markers to study chloroplast, genetic breeding, and plant molecular evolution. These findings provide a solid foundation for future research on the molecular biology of the chloroplast. |
---|