Cargando…

The prominent role of a CDR1 somatic hypermutation for convergent IGHV3-53/3-66 antibodies in binding to SARS-CoV-2

In the fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), monoclonal antibodies (mAbs) serve as key strategies for the rapid prevention and treatment of COVID-19. However, analysis to fully characterize functional SARS-CoV-2 mAbs is still needed. In this study, by interrogat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Xiaolong, Zhu, Xiaoyi, Song, Wenping, Yang, Zhenlin, Wu, Yanling, Ying, Tianlei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045774/
https://www.ncbi.nlm.nih.gov/pubmed/35380101
http://dx.doi.org/10.1080/22221751.2022.2063074
Descripción
Sumario:In the fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), monoclonal antibodies (mAbs) serve as key strategies for the rapid prevention and treatment of COVID-19. However, analysis to fully characterize functional SARS-CoV-2 mAbs is still needed. In this study, by interrogating 1,695 published or patented mAbs of human origin and validated SARS-CoV-2-binding potency, we found a highly preferential usage of IGHV3-53/3-66 germline genes that was then revealed as a distinct selectivity of SARS-CoV-2-induced humoral immunity across other coronaviruses. Moreover, among the rare somatic hypermutations, we identified a novel mutation signature of F27 to I, L, or V with high frequency, which was located in the CDR1 region of the heavy chain among IGHV3-53/3-66-encoded antibodies. This convergent mutation contributed to improving SARS-CoV-2 binding affinity and may advance our knowledge of the humoral immunity to SARS-CoV-2.