Cargando…
RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images
Since the advent of COVID-19, the number of deaths has increased exponentially, boosting the requirement for various research studies that may correctly diagnose the illness at an early stage. Using chest X-rays, this study presents deep learning-based algorithms for classifying patients with COVID...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045872/ https://www.ncbi.nlm.nih.gov/pubmed/35502163 http://dx.doi.org/10.1016/j.eswa.2022.117410 |
Sumario: | Since the advent of COVID-19, the number of deaths has increased exponentially, boosting the requirement for various research studies that may correctly diagnose the illness at an early stage. Using chest X-rays, this study presents deep learning-based algorithms for classifying patients with COVID illness, healthy controls, and pneumonia classes. Data gathering, pre-processing, feature extraction, and classification are the four primary aspects of the approach. The pictures of chest X-rays utilized in this investigation came from various publicly available databases. The pictures were filtered to increase image quality in the pre-processing stage, and the chest X-ray images were de-noised using the empirical wavelet transform (EWT). Following that, four deep learning models were used to extract features. The first two models, Inception-V3 and Resnet-50, are based on transfer learning models. The Resnet-50 is combined with a temporal convolutional neural network (TCN) to create the third model. The fourth model is our suggested RESCOVIDTCNNet model, which integrates EWT, Resnet-50, and TCN. Finally, an artificial neural network (ANN) and a support vector machine were used to classify the data (SVM). Using five-fold cross-validation for 3-class classification, our suggested RESCOVIDTCNNet achieved a 99.5 percent accuracy. Our prototype can be utilized in developing nations where radiologists are in low supply to acquire a diagnosis quickly. |
---|