Cargando…
Joint Dense Residual and Recurrent Attention Network for DCE-MRI Breast Tumor Segmentation
Breast cancer detection largely relies on imaging characteristics and the ability of clinicians to easily and quickly identify potential lesions. Magnetic resonance imaging (MRI) of breast tumors has recently shown great promise for enabling the automatic identification of breast tumors. Nevertheles...
Autores principales: | Qin, ChuanBo, Lin, JingYin, Zeng, JunYing, Zhai, YiKui, Tian, LianFang, Peng, ShuTing, Li, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045980/ https://www.ncbi.nlm.nih.gov/pubmed/35498198 http://dx.doi.org/10.1155/2022/3470764 |
Ejemplares similares
-
Research on multi-path dense networks for MRI spinal segmentation
por: Liang, ShuFen, et al.
Publicado: (2021) -
Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI
por: Nowakowska, Sylwia, et al.
Publicado: (2023) -
Variational Approach for Joint Kidney Segmentation and Registration from DCE-MRI Using Fuzzy Clustering with Shape Priors
por: El-Melegy, Moumen, et al.
Publicado: (2022) -
Improved U-Net3+ with stage residual for brain tumor segmentation
por: Qin, Chuanbo, et al.
Publicado: (2022) -
A Pipelined Tracer-Aware Approach for Lesion Segmentation in Breast DCE-MRI
por: Galli, Antonio, et al.
Publicado: (2021)