Cargando…

Deep Personal Multitask Prediction of Diabetes Complication with Attentive Interactions Predicting Diabetes Complications by Multitask-Learning

OBJECTIVE: Diabetic complications have brought a tremendous burden for diabetic patients, but the problem of predicting diabetic complications is still unresolved. Our aim is to explore the relationship between hemoglobin A1C (HbA1c), insulin (INS), and glucose (GLU) and diabetic complications in co...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuo, Ming, Zhang, Wei, Xu, Qi, Chen, Dehua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045985/
https://www.ncbi.nlm.nih.gov/pubmed/35494508
http://dx.doi.org/10.1155/2022/5129125
Descripción
Sumario:OBJECTIVE: Diabetic complications have brought a tremendous burden for diabetic patients, but the problem of predicting diabetic complications is still unresolved. Our aim is to explore the relationship between hemoglobin A1C (HbA1c), insulin (INS), and glucose (GLU) and diabetic complications in combination with individual factors and to effectively predict multiple complications of diabetes. METHODS: This was a real-world study. Data were collected from 40,913 participants with an average age of 48 years from the Department of Endocrinology of Ruijin Hospital in Shanghai. We proposed deep personal multitask prediction of diabetes complication with attentive interactions (DPMP-DC) to predict the five complication models of diabetes, including diabetic retinopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic foot disease, and diabetic cardiovascular disease. RESULTS: Our model has an accuracy rate of 88.01% for diabetic retinopathy, 89.58% for diabetic nephropathy, 85.77% for diabetic neuropathy, 80.56% for diabetic foot disease, and 82.48% for diabetic cardiovascular disease. The multitasking accuracy of multiple complications is 84.67%, and the missed diagnosis rate is 9.07%. CONCLUSION: We put forward the method of interactive integration with individual factors of patients for the first time in diabetic complications, which reflect the differences between individuals. Our multitask model using the hard sharing mechanism provides better prediction than prior single prediction models.