Cargando…
Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology
Inferring single-cell compositions and their contributions to global gene expression changes from bulk RNA sequencing (RNA-seq) datasets is a major challenge in oncology. Here we develop Bayesian cell proportion reconstruction inferred using statistical marginalization (BayesPrism), a Bayesian metho...
Autores principales: | Chu, Tinyi, Wang, Zhong, Pe’er, Dana, Danko, Charles G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046084/ https://www.ncbi.nlm.nih.gov/pubmed/35469013 http://dx.doi.org/10.1038/s43018-022-00356-3 |
Ejemplares similares
-
NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution
por: Mylonas, Constantine, et al.
Publicado: (2019) -
Bayesian model reduction and empirical Bayes for group (DCM) studies
por: Friston, Karl J., et al.
Publicado: (2016) -
Single-cell Bayesian deconvolution
por: Torregrosa-Cortés, Gabriel, et al.
Publicado: (2023) -
Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
por: Andrade Barbosa, Bárbara, et al.
Publicado: (2021) -
BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures
por: Ghaffari, Saba, et al.
Publicado: (2023)