Cargando…
Aqueous zinc batteries: Design principles toward organic cathodes for grid applications
The development of low-cost and sustainable grid energy storage is urgently needed to accommodate the growing proportion of intermittent renewables in the global energy mix. Aqueous zinc-ion batteries are promising candidates to provide grid storage due to their inherent safety, scalability, and eco...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046109/ https://www.ncbi.nlm.nih.gov/pubmed/35494222 http://dx.doi.org/10.1016/j.isci.2022.104204 |
_version_ | 1784695453497950208 |
---|---|
author | Grignon, Eloi Battaglia, Alicia M. Schon, Tyler B. Seferos, Dwight S. |
author_facet | Grignon, Eloi Battaglia, Alicia M. Schon, Tyler B. Seferos, Dwight S. |
author_sort | Grignon, Eloi |
collection | PubMed |
description | The development of low-cost and sustainable grid energy storage is urgently needed to accommodate the growing proportion of intermittent renewables in the global energy mix. Aqueous zinc-ion batteries are promising candidates to provide grid storage due to their inherent safety, scalability, and economic viability. Organic cathode materials are especially advantageous for use in zinc-ion batteries as they can be synthesized using scalable processes from inexpensive starting materials and have potential for biodegradation at their end of life. Strategies for designing organic cathode materials for rechargeable zinc-ion batteries targeting grid applications will be discussed in detail. Specifically, we emphasize the importance of cost analysis, synthetic simplicity, end-of-life scenarios, areal loading of active material, and long-term stability to materials design. We highlight the strengths and challenges of present zinc-organic research in the context of our design principles, and provide opportunities and considerations for future electrode design. |
format | Online Article Text |
id | pubmed-9046109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90461092022-04-29 Aqueous zinc batteries: Design principles toward organic cathodes for grid applications Grignon, Eloi Battaglia, Alicia M. Schon, Tyler B. Seferos, Dwight S. iScience Perspective The development of low-cost and sustainable grid energy storage is urgently needed to accommodate the growing proportion of intermittent renewables in the global energy mix. Aqueous zinc-ion batteries are promising candidates to provide grid storage due to their inherent safety, scalability, and economic viability. Organic cathode materials are especially advantageous for use in zinc-ion batteries as they can be synthesized using scalable processes from inexpensive starting materials and have potential for biodegradation at their end of life. Strategies for designing organic cathode materials for rechargeable zinc-ion batteries targeting grid applications will be discussed in detail. Specifically, we emphasize the importance of cost analysis, synthetic simplicity, end-of-life scenarios, areal loading of active material, and long-term stability to materials design. We highlight the strengths and challenges of present zinc-organic research in the context of our design principles, and provide opportunities and considerations for future electrode design. Elsevier 2022-04-04 /pmc/articles/PMC9046109/ /pubmed/35494222 http://dx.doi.org/10.1016/j.isci.2022.104204 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Perspective Grignon, Eloi Battaglia, Alicia M. Schon, Tyler B. Seferos, Dwight S. Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title | Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title_full | Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title_fullStr | Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title_full_unstemmed | Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title_short | Aqueous zinc batteries: Design principles toward organic cathodes for grid applications |
title_sort | aqueous zinc batteries: design principles toward organic cathodes for grid applications |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046109/ https://www.ncbi.nlm.nih.gov/pubmed/35494222 http://dx.doi.org/10.1016/j.isci.2022.104204 |
work_keys_str_mv | AT grignoneloi aqueouszincbatteriesdesignprinciplestowardorganiccathodesforgridapplications AT battagliaaliciam aqueouszincbatteriesdesignprinciplestowardorganiccathodesforgridapplications AT schontylerb aqueouszincbatteriesdesignprinciplestowardorganiccathodesforgridapplications AT seferosdwights aqueouszincbatteriesdesignprinciplestowardorganiccathodesforgridapplications |