Cargando…
Automated estimation of cancer cell deformability with machine learning and acoustic trapping
Cell deformability is a useful feature for diagnosing various diseases (e.g., the invasiveness of cancer cells). Existing methods commonly inflict pressure on cells and observe changes in cell areas, diameters, or thickness according to the degree of pressure. Then, the Young’s moduli (i.e., a measu...
Autores principales: | Lee, O-Joun, Lim, Hae Gyun, Shung, K. Kirk, Kim, Jin-Taek, Kim, Hyung Ham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046201/ https://www.ncbi.nlm.nih.gov/pubmed/35477742 http://dx.doi.org/10.1038/s41598-022-10882-w |
Ejemplares similares
-
Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks
por: Lim, Hae Gyun, et al.
Publicado: (2020) -
Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing
por: Jeon, Hyeon-Ju, et al.
Publicado: (2022) -
Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers
por: Kim, Min Gon, et al.
Publicado: (2017) -
Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics
por: Hwang, Jae Youn, et al.
Publicado: (2016) -
Characterizing Deformability of Drug Resistant Patient-Derived Acute Lymphoblastic Leukemia (ALL) Cells Using Acoustic Tweezers
por: Liu, Hsiao-Chuan, et al.
Publicado: (2018)