Cargando…

Analysis of stiffness and damping performance of the composite leaf spring

Lightweight design of leaf springs is conducive to reducing fuel consumption and improving vehicle comfort. The weight of leaf spring can be reduced obviously by using composite material. Stiffness and damping are the key factors that affect the properties of the leaf spring. The influence of the gl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Xiaojun, Zhang, Bao, Yin, Guodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046212/
https://www.ncbi.nlm.nih.gov/pubmed/35477981
http://dx.doi.org/10.1038/s41598-022-11055-5
Descripción
Sumario:Lightweight design of leaf springs is conducive to reducing fuel consumption and improving vehicle comfort. The weight of leaf spring can be reduced obviously by using composite material. Stiffness and damping are the key factors that affect the properties of the leaf spring. The influence of the glass fiber laying angle and volume content on the stiffness and damping of the composite leaf spring was analyzed through experiment and simulation. The results show that the stiffness and damping properties of the leaf springs are related to the fiber laying angle and the fiber volume content. When the volume content and the number of layers are constant, the stiffness shows a nonlinear decreasing relationship with the laying angle, and the damping coefficient increases linearly with the laying angle. When the laying angle and the number of layers are constant, the stiffness increases linearly with the fiber volume content; the damping coefficient has a nonlinear decreasing relationship with the fiber volume content. The type of research can provide theoretical basis and reference for the design, analysis and optimization of composite leaf spring.