Cargando…

L-tyrosine-bound ThiH structure reveals C–C bond break differences within radical SAM aromatic amino acid lyases

2-iminoacetate synthase ThiH is a radical S-adenosyl-L-methionine (SAM) L-tyrosine lyase and catalyzes the L-tyrosine Cα–Cβ bond break to produce dehydroglycine and p-cresol while the radical SAM L-tryptophan lyase NosL cleaves the L-tryptophan Cα–C bond to produce 3-methylindole-2-carboxylic acid....

Descripción completa

Detalles Bibliográficos
Autores principales: Amara, Patricia, Saragaglia, Claire, Mouesca, Jean-Marie, Martin, Lydie, Nicolet, Yvain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046217/
https://www.ncbi.nlm.nih.gov/pubmed/35477710
http://dx.doi.org/10.1038/s41467-022-29980-4
Descripción
Sumario:2-iminoacetate synthase ThiH is a radical S-adenosyl-L-methionine (SAM) L-tyrosine lyase and catalyzes the L-tyrosine Cα–Cβ bond break to produce dehydroglycine and p-cresol while the radical SAM L-tryptophan lyase NosL cleaves the L-tryptophan Cα–C bond to produce 3-methylindole-2-carboxylic acid. It has been difficult to understand the features that condition one C–C bond break over the other one because the two enzymes display significant primary structure similarities and presumably similar substrate-binding modes. Here, we report the crystal structure of L-tyrosine bound ThiH from Thermosinus carboxydivorans revealing an unusual protonation state of L-tyrosine upon binding. Structural comparison of ThiH with NosL and computational studies of the respective reactions they catalyze show that substrate activation is eased by tunneling effect and that subtle structural changes between the two enzymes affect, in particular, the hydrogen-atom abstraction by the 5´-deoxyadenosyl radical species, driving the difference in reaction specificity.