Cargando…

α-Clustering in atomic nuclei from first principles with statistical learning and the Hoyle state character

A long-standing crucial question with atomic nuclei is whether or not α clustering occurs there. An α particle (helium-4 nucleus) comprises two protons and two neutrons, and may be the building block of some nuclei. This is a very beautiful and fascinating idea, and is indeed plausible because the α...

Descripción completa

Detalles Bibliográficos
Autores principales: Otsuka, T., Abe, T., Yoshida, T., Tsunoda, Y., Shimizu, N., Itagaki, N., Utsuno, Y., Vary, J., Maris, P., Ueno, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046222/
https://www.ncbi.nlm.nih.gov/pubmed/35477704
http://dx.doi.org/10.1038/s41467-022-29582-0
Descripción
Sumario:A long-standing crucial question with atomic nuclei is whether or not α clustering occurs there. An α particle (helium-4 nucleus) comprises two protons and two neutrons, and may be the building block of some nuclei. This is a very beautiful and fascinating idea, and is indeed plausible because the α particle is particularly stable with a large binding energy. However, direct experimental evidence has never been provided. Here, we show whether and how α(-like) objects emerge in atomic nuclei, by means of state-of-the-art quantum many-body simulations formulated from first principles, utilizing supercomputers including K/Fugaku. The obtained physical quantities exhibit agreement with experimental data. The appearance and variation of the α clustering are shown by utilizing density profiles for the nuclei beryllium-8, -10 and carbon-12. With additional insight by statistical learning, an unexpected crossover picture is presented for the Hoyle state, a critical gateway to the birth of life.