Cargando…

AI-enabled in silico immunohistochemical characterization for Alzheimer's disease

We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are con...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Bryan, Bukhari, Syed, Fox, Edward, Abid, Abubakar, Shen, Jeanne, Kawas, Claudia, Corrada, Maria, Montine, Thomas, Zou, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046239/
https://www.ncbi.nlm.nih.gov/pubmed/35497493
http://dx.doi.org/10.1016/j.crmeth.2022.100191
_version_ 1784695481806356480
author He, Bryan
Bukhari, Syed
Fox, Edward
Abid, Abubakar
Shen, Jeanne
Kawas, Claudia
Corrada, Maria
Montine, Thomas
Zou, James
author_facet He, Bryan
Bukhari, Syed
Fox, Edward
Abid, Abubakar
Shen, Jeanne
Kawas, Claudia
Corrada, Maria
Montine, Thomas
Zou, James
author_sort He, Bryan
collection PubMed
description We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are conventionally identified using IHC staining across many regions of the brain. In silico IHC computationally identifies neurofibrillary tangles, β-amyloid plaques, and neuritic plaques at a high spatial resolution directly from the histochemical images, with areas under the receiver operating characteristic curve of between 0.88 and 0.92. In silico IHC learns to identify subtle cellular morphologies associated with these lesions and can generate in silico IHC slides that capture key features of the actual IHC.
format Online
Article
Text
id pubmed-9046239
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90462392022-04-29 AI-enabled in silico immunohistochemical characterization for Alzheimer's disease He, Bryan Bukhari, Syed Fox, Edward Abid, Abubakar Shen, Jeanne Kawas, Claudia Corrada, Maria Montine, Thomas Zou, James Cell Rep Methods Article We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are conventionally identified using IHC staining across many regions of the brain. In silico IHC computationally identifies neurofibrillary tangles, β-amyloid plaques, and neuritic plaques at a high spatial resolution directly from the histochemical images, with areas under the receiver operating characteristic curve of between 0.88 and 0.92. In silico IHC learns to identify subtle cellular morphologies associated with these lesions and can generate in silico IHC slides that capture key features of the actual IHC. Elsevier 2022-03-28 /pmc/articles/PMC9046239/ /pubmed/35497493 http://dx.doi.org/10.1016/j.crmeth.2022.100191 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
He, Bryan
Bukhari, Syed
Fox, Edward
Abid, Abubakar
Shen, Jeanne
Kawas, Claudia
Corrada, Maria
Montine, Thomas
Zou, James
AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title_full AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title_fullStr AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title_full_unstemmed AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title_short AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
title_sort ai-enabled in silico immunohistochemical characterization for alzheimer's disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046239/
https://www.ncbi.nlm.nih.gov/pubmed/35497493
http://dx.doi.org/10.1016/j.crmeth.2022.100191
work_keys_str_mv AT hebryan aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT bukharisyed aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT foxedward aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT abidabubakar aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT shenjeanne aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT kawasclaudia aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT corradamaria aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT montinethomas aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease
AT zoujames aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease