Cargando…
AI-enabled in silico immunohistochemical characterization for Alzheimer's disease
We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are con...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046239/ https://www.ncbi.nlm.nih.gov/pubmed/35497493 http://dx.doi.org/10.1016/j.crmeth.2022.100191 |
_version_ | 1784695481806356480 |
---|---|
author | He, Bryan Bukhari, Syed Fox, Edward Abid, Abubakar Shen, Jeanne Kawas, Claudia Corrada, Maria Montine, Thomas Zou, James |
author_facet | He, Bryan Bukhari, Syed Fox, Edward Abid, Abubakar Shen, Jeanne Kawas, Claudia Corrada, Maria Montine, Thomas Zou, James |
author_sort | He, Bryan |
collection | PubMed |
description | We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are conventionally identified using IHC staining across many regions of the brain. In silico IHC computationally identifies neurofibrillary tangles, β-amyloid plaques, and neuritic plaques at a high spatial resolution directly from the histochemical images, with areas under the receiver operating characteristic curve of between 0.88 and 0.92. In silico IHC learns to identify subtle cellular morphologies associated with these lesions and can generate in silico IHC slides that capture key features of the actual IHC. |
format | Online Article Text |
id | pubmed-9046239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90462392022-04-29 AI-enabled in silico immunohistochemical characterization for Alzheimer's disease He, Bryan Bukhari, Syed Fox, Edward Abid, Abubakar Shen, Jeanne Kawas, Claudia Corrada, Maria Montine, Thomas Zou, James Cell Rep Methods Article We develop a deep learning approach, in silico immunohistochemistry (IHC), which takes routinely collected histochemical-stained samples as input and computationally generates virtual IHC slide images. We apply in silico IHC to Alzheimer's disease samples, where several hallmark changes are conventionally identified using IHC staining across many regions of the brain. In silico IHC computationally identifies neurofibrillary tangles, β-amyloid plaques, and neuritic plaques at a high spatial resolution directly from the histochemical images, with areas under the receiver operating characteristic curve of between 0.88 and 0.92. In silico IHC learns to identify subtle cellular morphologies associated with these lesions and can generate in silico IHC slides that capture key features of the actual IHC. Elsevier 2022-03-28 /pmc/articles/PMC9046239/ /pubmed/35497493 http://dx.doi.org/10.1016/j.crmeth.2022.100191 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article He, Bryan Bukhari, Syed Fox, Edward Abid, Abubakar Shen, Jeanne Kawas, Claudia Corrada, Maria Montine, Thomas Zou, James AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title | AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title_full | AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title_fullStr | AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title_full_unstemmed | AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title_short | AI-enabled in silico immunohistochemical characterization for Alzheimer's disease |
title_sort | ai-enabled in silico immunohistochemical characterization for alzheimer's disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046239/ https://www.ncbi.nlm.nih.gov/pubmed/35497493 http://dx.doi.org/10.1016/j.crmeth.2022.100191 |
work_keys_str_mv | AT hebryan aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT bukharisyed aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT foxedward aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT abidabubakar aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT shenjeanne aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT kawasclaudia aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT corradamaria aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT montinethomas aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease AT zoujames aienabledinsilicoimmunohistochemicalcharacterizationforalzheimersdisease |