Cargando…
Accurate inference of crowdsourcing properties when using efficient allocation strategies
Allocation strategies improve the efficiency of crowdsourcing by decreasing the work needed to complete individual tasks accurately. However, these algorithms introduce bias by preferentially allocating workers onto easy tasks, leading to sets of completed tasks that are no longer representative of...
Autores principales: | Hotaling, Abigail, Bagrow, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046272/ https://www.ncbi.nlm.nih.gov/pubmed/35477953 http://dx.doi.org/10.1038/s41598-022-10794-9 |
Ejemplares similares
-
Efficient crowdsourcing of crowd-generated microtasks
por: Hotaling, Abigail, et al.
Publicado: (2020) -
Reply & Supply: Efficient crowdsourcing when workers do more than answer questions
por: McAndrew, Thomas C., et al.
Publicado: (2017) -
Inferring Mathematical Equations Using Crowdsourcing
por: Wasik, Szymon, et al.
Publicado: (2015) -
Task Allocation Model Based on Worker Friend Relationship for Mobile Crowdsourcing
por: Zhao, Bingxu, et al.
Publicado: (2019) -
IPSCL: An Accurate Indoor Positioning Algorithm Using Sensors and Crowdsourced Landmarks
por: Jang, Beakcheol, et al.
Publicado: (2019)