Cargando…
The structure of near-wall re-entrant flow and its influence on cloud cavitation instability
ABSTRACT: The so-called ‘re-entrant jet’ is fundamental to periodic cloud shedding in partial cavitation. However, the exact physical mechanism governing this phenomenon remains ambiguous. The complicated topology of the re-entrant flow renders whole-field, detailed measurement of the re-entrant flo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046369/ https://www.ncbi.nlm.nih.gov/pubmed/35535355 http://dx.doi.org/10.1007/s00348-022-03417-6 |
Sumario: | ABSTRACT: The so-called ‘re-entrant jet’ is fundamental to periodic cloud shedding in partial cavitation. However, the exact physical mechanism governing this phenomenon remains ambiguous. The complicated topology of the re-entrant flow renders whole-field, detailed measurement of the re-entrant flow cumbersome. Hence, most studies in the past have derived a physical understanding of this phenomenon from qualitative analyses of the re-entrant jet. Thus, quantitative studies are scarce in the literature. In this work, we present a methodology to experimentally measure the re-entrant flow below the vapour cavity in an axisymmetric venturi. The axisymmetry of the flow geometry is exploited to image tracer particles in the near-wall re-entrant flow. The main objective of employing tomographic imaging and subsequent velocimetry is to resolve the thickness and the velocity of the re-entrant flow. Additionally, phase-averaging conditioned on cavity length sheds light on the temporal evolution of re-entrant flow in a shedding cycle. The measured re-entrant film is as thick as [Formula: see text] mm for a maximum cavity length of [Formula: see text] , where [Formula: see text] is the venturi throat diameter. However, the re-entrant film thickness at higher cavitation number is measured to be about 0.5 mm. Further, the re-entrant flow is seen to attain a maximum velocity up to half the throat velocity as the vapour cavity grows in time and the re-entrant flow thickens. We observe that a complex spatio-temporal evolution of re-entrant flow is involved in the cavity detachment and periodic cloud shedding. Finally, we apply the demonstrated methodology to study the evolution of the near-wall liquid flow, below the vapour cavity in different cavity shedding flow regimes. The role of two main mechanisms responsible for cloud shedding, i.e. (i) the adverse-pressure gradient driven re-entrant jet, and (ii) the bubbly shock wave emanating from the cloud collapse are quantitatively assessed. We observe that the thickness of the re-entrant liquid film with respect to the cavity thickness can influence the cavity shedding behaviour. Further, we show that both the mechanisms could be operating at a given flow condition, with one of them dominating to dictate the cloud shedding behaviour. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00348-022-03417-6. |
---|