Cargando…
Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes
There is growing evidence for the importance of 3’ untranslated region (3’UTR) dependent regulatory processes. However, our current human 3’UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict...
Autores principales: | Sethi, Siddharth, Zhang, David, Guelfi, Sebastian, Chen, Zhongbo, Garcia-Ruiz, Sonia, Olagbaju, Emmanuel O., Ryten, Mina, Saini, Harpreet, Botia, Juan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046390/ https://www.ncbi.nlm.nih.gov/pubmed/35477703 http://dx.doi.org/10.1038/s41467-022-30017-z |
Ejemplares similares
-
Cross-species mapping of bidirectional promoters enables prediction of unannotated 5' UTRs and identification of species-specific transcripts
por: Piontkivska, Helen, et al.
Publicado: (2009) -
Identification of Unannotated Small Genes in Salmonella
por: Baek, Jonghwan, et al.
Publicado: (2017) -
Analysis of Unannotated Equine Transcripts Identified by mRNA Sequencing
por: Coleman, Stephen J., et al.
Publicado: (2013) -
Automated acquisition of explainable knowledge from unannotated histopathology images
por: Yamamoto, Yoichiro, et al.
Publicado: (2019) -
An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks
por: Botía, Juan A., et al.
Publicado: (2017)