Cargando…
Differences between human and machine perception in medical diagnosis
Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since they can fail for reasons unrelated to underlying pathology. Humans are less likely to make such superficial mistakes, since they use features that are grounded on medical science. It is ther...
Autores principales: | Makino, Taro, Jastrzębski, Stanisław, Oleszkiewicz, Witold, Chacko, Celin, Ehrenpreis, Robin, Samreen, Naziya, Chhor, Chloe, Kim, Eric, Lee, Jiyon, Pysarenko, Kristine, Reig, Beatriu, Toth, Hildegard, Awal, Divya, Du, Linda, Kim, Alice, Park, James, Sodickson, Daniel K., Heacock, Laura, Moy, Linda, Cho, Kyunghyun, Geras, Krzysztof J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046399/ https://www.ncbi.nlm.nih.gov/pubmed/35477730 http://dx.doi.org/10.1038/s41598-022-10526-z |
Ejemplares similares
-
Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening
por: Wu, Nan, et al.
Publicado: (2019) -
Improving breast cancer diagnostics with artificial intelligence for MRI
por: Witowski, Jan, et al.
Publicado: (2022) -
Axillary Adenopathy after COVID-19 Vaccine: No Reason to Delay
Screening Mammogram
por: Wolfson, Stacey, et al.
Publicado: (2022) -
Axillary Adenopathy after COVID-19 Vaccine: No Reason to Delay
Screening Mammogram
por: Wolfson, Stacey, et al.
Publicado: (2022) -
Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams
por: Shen, Yiqiu, et al.
Publicado: (2021)