Cargando…
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
BACKGROUND: The health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary involvement in detail, one of the most common resources is the use of different l...
Autores principales: | Álvarez-Rodríguez, Lorena, Moura, Joaquim de, Novo, Jorge, Ortega, Marcos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046709/ https://www.ncbi.nlm.nih.gov/pubmed/35484483 http://dx.doi.org/10.1186/s12874-022-01578-w |
Ejemplares similares
-
Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images
por: de Moura, Joaquim, et al.
Publicado: (2022) -
Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images
por: Morís, Daniel Iglesias, et al.
Publicado: (2021) -
Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
por: Vidal, Plácido L., et al.
Publicado: (2021) -
BRAX, Brazilian labeled chest x-ray dataset
por: Reis, Eduardo P., et al.
Publicado: (2022) -
Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
por: Larrazabal, Agostina J., et al.
Publicado: (2020)