Cargando…

Accelerated Optimization on Riemannian Manifolds via Discrete Constrained Variational Integrators

A variational formulation for accelerated optimization on normed vector spaces was recently introduced in Wibisono et al. (PNAS 113:E7351–E7358, 2016), and later generalized to the Riemannian manifold setting in Duruisseaux and Leok (SJMDS, 2022a). This variational framework was exploited on normed...

Descripción completa

Detalles Bibliográficos
Autores principales: Duruisseaux, Valentin, Leok, Melvin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046732/
https://www.ncbi.nlm.nih.gov/pubmed/35502199
http://dx.doi.org/10.1007/s00332-022-09795-9
Descripción
Sumario:A variational formulation for accelerated optimization on normed vector spaces was recently introduced in Wibisono et al. (PNAS 113:E7351–E7358, 2016), and later generalized to the Riemannian manifold setting in Duruisseaux and Leok (SJMDS, 2022a). This variational framework was exploited on normed vector spaces in Duruisseaux et al. (SJSC 43:A2949–A2980, 2021) using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic accelerated optimization, and it was observed that geometric discretizations which respect the time-rescaling invariance and symplecticity of the Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop time-adaptive Hamiltonian variational integrators for accelerated optimization on Riemannian manifolds. In this paper, we consider the case of Riemannian manifolds embedded in a Euclidean space that can be characterized as the level set of a submersion. We will explore how holonomic constraints can be incorporated in discrete variational integrators to constrain the numerical discretization of the Riemannian Hamiltonian system to the Riemannian manifold, and we will test the performance of the resulting algorithms by solving eigenvalue and Procrustes problems formulated as optimization problems on the unit sphere and Stiefel manifold.