Cargando…

Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis

Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targ...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinton, Tonaye, Karnak, David, Tang, Ming, Jiang, Ralph, Luo, Yi, Boonstra, Philip, Sun, Yilun, Nancarrow, Derek J., Sandford, Erin, Ray, Paramita, Maurino, Christopher, Matuszak, Martha, Schipper, Matthew J., Green, Michael D., Yanik, Gregory A., Tewari, Muneesh, Naqa, Issam El, Schonewolf, Caitlin A., Haken, Randall Ten, Jolly, Shruti, Lawrence, Theodore S., Ray, Dipankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046881/
https://www.ncbi.nlm.nih.gov/pubmed/35460942
http://dx.doi.org/10.1016/j.tranon.2022.101428
_version_ 1784695611928346624
author Hinton, Tonaye
Karnak, David
Tang, Ming
Jiang, Ralph
Luo, Yi
Boonstra, Philip
Sun, Yilun
Nancarrow, Derek J.
Sandford, Erin
Ray, Paramita
Maurino, Christopher
Matuszak, Martha
Schipper, Matthew J.
Green, Michael D.
Yanik, Gregory A.
Tewari, Muneesh
Naqa, Issam El
Schonewolf, Caitlin A.
Haken, Randall Ten
Jolly, Shruti
Lawrence, Theodore S.
Ray, Dipankar
author_facet Hinton, Tonaye
Karnak, David
Tang, Ming
Jiang, Ralph
Luo, Yi
Boonstra, Philip
Sun, Yilun
Nancarrow, Derek J.
Sandford, Erin
Ray, Paramita
Maurino, Christopher
Matuszak, Martha
Schipper, Matthew J.
Green, Michael D.
Yanik, Gregory A.
Tewari, Muneesh
Naqa, Issam El
Schonewolf, Caitlin A.
Haken, Randall Ten
Jolly, Shruti
Lawrence, Theodore S.
Ray, Dipankar
author_sort Hinton, Tonaye
collection PubMed
description Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we analyzed patients’ plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate biomarkers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific leukotoxic corticosteroids.
format Online
Article
Text
id pubmed-9046881
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-90468812022-05-03 Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis Hinton, Tonaye Karnak, David Tang, Ming Jiang, Ralph Luo, Yi Boonstra, Philip Sun, Yilun Nancarrow, Derek J. Sandford, Erin Ray, Paramita Maurino, Christopher Matuszak, Martha Schipper, Matthew J. Green, Michael D. Yanik, Gregory A. Tewari, Muneesh Naqa, Issam El Schonewolf, Caitlin A. Haken, Randall Ten Jolly, Shruti Lawrence, Theodore S. Ray, Dipankar Transl Oncol Original Research Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we analyzed patients’ plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate biomarkers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific leukotoxic corticosteroids. Neoplasia Press 2022-04-20 /pmc/articles/PMC9046881/ /pubmed/35460942 http://dx.doi.org/10.1016/j.tranon.2022.101428 Text en © 2022 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research
Hinton, Tonaye
Karnak, David
Tang, Ming
Jiang, Ralph
Luo, Yi
Boonstra, Philip
Sun, Yilun
Nancarrow, Derek J.
Sandford, Erin
Ray, Paramita
Maurino, Christopher
Matuszak, Martha
Schipper, Matthew J.
Green, Michael D.
Yanik, Gregory A.
Tewari, Muneesh
Naqa, Issam El
Schonewolf, Caitlin A.
Haken, Randall Ten
Jolly, Shruti
Lawrence, Theodore S.
Ray, Dipankar
Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title_full Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title_fullStr Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title_full_unstemmed Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title_short Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis
title_sort improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven bayesian network analysis
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046881/
https://www.ncbi.nlm.nih.gov/pubmed/35460942
http://dx.doi.org/10.1016/j.tranon.2022.101428
work_keys_str_mv AT hintontonaye improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT karnakdavid improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT tangming improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT jiangralph improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT luoyi improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT boonstraphilip improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT sunyilun improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT nancarrowderekj improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT sandforderin improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT rayparamita improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT maurinochristopher improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT matuszakmartha improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT schippermatthewj improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT greenmichaeld improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT yanikgregorya improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT tewarimuneesh improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT naqaissamel improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT schonewolfcaitlina improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT hakenrandallten improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT jollyshruti improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT lawrencetheodores improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis
AT raydipankar improvedpredictionofradiationpneumonitisbycombiningbiologicalandradiobiologicalparametersusingadatadrivenbayesiannetworkanalysis