Cargando…

The lamellar structure and biomimetic properties of a fish scale matrix

The chemical composition of scaffolds is similar to the extracellular matrix of the target tissue, but sometimes scaffolds cannot meet the special functional requirements for the initial stage of engineering tissue, such as mechanical and optical properties. Bionic scaffolds require certain levels o...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Huanhuan, Li, Xia, Deng, Xiaoming, Li, Xiaolei, Guo, Jitong, Ma, Ke, Jiang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046992/
https://www.ncbi.nlm.nih.gov/pubmed/35494441
http://dx.doi.org/10.1039/c9ra08189e
_version_ 1784695637429714944
author Feng, Huanhuan
Li, Xia
Deng, Xiaoming
Li, Xiaolei
Guo, Jitong
Ma, Ke
Jiang, Bo
author_facet Feng, Huanhuan
Li, Xia
Deng, Xiaoming
Li, Xiaolei
Guo, Jitong
Ma, Ke
Jiang, Bo
author_sort Feng, Huanhuan
collection PubMed
description The chemical composition of scaffolds is similar to the extracellular matrix of the target tissue, but sometimes scaffolds cannot meet the special functional requirements for the initial stage of engineering tissue, such as mechanical and optical properties. Bionic scaffolds require certain levels of supramolecular structure, textile structure and liquid crystal structure. Here, we will focus our attention on animal tissues with a similar high-level structure to that of the target organization and we hope to achieve the desired results through new technical means. In this study, we have developed a method to obtain a fish scale lamellar matrix from grass carp scales. The fine structure of the scale matrix has been studied, and it was found that the grass carp scale matrix is a textured structure consisting of multiple collagen sheets, which have a double-twisted spiral structure similar to a liquid crystal, thus correcting the literature reports of a single twisted spiral structure. Interestingly, this structure has many similarities with the cornea, cementum and tibial matrix. At the same time, the correlation between the etching time and the optical properties of the scaffold was also studied, and the scale matrix can reach light transmission and refraction levels similar to those of the corneal stroma. Moreover, the matrix has good mechanical properties, in vitro anti-enzymatic abilities and compatibility with human corneal epithelial cells. Therefore, this kind of scaffold material and preparation method, with a lamellar structure and special physical parameters, may provide new hope for corneal prosthesis.
format Online
Article
Text
id pubmed-9046992
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90469922022-04-28 The lamellar structure and biomimetic properties of a fish scale matrix Feng, Huanhuan Li, Xia Deng, Xiaoming Li, Xiaolei Guo, Jitong Ma, Ke Jiang, Bo RSC Adv Chemistry The chemical composition of scaffolds is similar to the extracellular matrix of the target tissue, but sometimes scaffolds cannot meet the special functional requirements for the initial stage of engineering tissue, such as mechanical and optical properties. Bionic scaffolds require certain levels of supramolecular structure, textile structure and liquid crystal structure. Here, we will focus our attention on animal tissues with a similar high-level structure to that of the target organization and we hope to achieve the desired results through new technical means. In this study, we have developed a method to obtain a fish scale lamellar matrix from grass carp scales. The fine structure of the scale matrix has been studied, and it was found that the grass carp scale matrix is a textured structure consisting of multiple collagen sheets, which have a double-twisted spiral structure similar to a liquid crystal, thus correcting the literature reports of a single twisted spiral structure. Interestingly, this structure has many similarities with the cornea, cementum and tibial matrix. At the same time, the correlation between the etching time and the optical properties of the scaffold was also studied, and the scale matrix can reach light transmission and refraction levels similar to those of the corneal stroma. Moreover, the matrix has good mechanical properties, in vitro anti-enzymatic abilities and compatibility with human corneal epithelial cells. Therefore, this kind of scaffold material and preparation method, with a lamellar structure and special physical parameters, may provide new hope for corneal prosthesis. The Royal Society of Chemistry 2020-01-03 /pmc/articles/PMC9046992/ /pubmed/35494441 http://dx.doi.org/10.1039/c9ra08189e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Feng, Huanhuan
Li, Xia
Deng, Xiaoming
Li, Xiaolei
Guo, Jitong
Ma, Ke
Jiang, Bo
The lamellar structure and biomimetic properties of a fish scale matrix
title The lamellar structure and biomimetic properties of a fish scale matrix
title_full The lamellar structure and biomimetic properties of a fish scale matrix
title_fullStr The lamellar structure and biomimetic properties of a fish scale matrix
title_full_unstemmed The lamellar structure and biomimetic properties of a fish scale matrix
title_short The lamellar structure and biomimetic properties of a fish scale matrix
title_sort lamellar structure and biomimetic properties of a fish scale matrix
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046992/
https://www.ncbi.nlm.nih.gov/pubmed/35494441
http://dx.doi.org/10.1039/c9ra08189e
work_keys_str_mv AT fenghuanhuan thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT lixia thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT dengxiaoming thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT lixiaolei thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT guojitong thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT make thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT jiangbo thelamellarstructureandbiomimeticpropertiesofafishscalematrix
AT fenghuanhuan lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT lixia lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT dengxiaoming lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT lixiaolei lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT guojitong lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT make lamellarstructureandbiomimeticpropertiesofafishscalematrix
AT jiangbo lamellarstructureandbiomimeticpropertiesofafishscalematrix