Cargando…

Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions

[Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these propertie...

Descripción completa

Detalles Bibliográficos
Autores principales: Zotev, Panaiot G., Wang, Yue, Sortino, Luca, Severs Millard, Toby, Mullin, Nic, Conteduca, Donato, Shagar, Mostafa, Genco, Armando, Hobbs, Jamie K., Krauss, Thomas F., Tartakovskii, Alexander I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047003/
https://www.ncbi.nlm.nih.gov/pubmed/35385647
http://dx.doi.org/10.1021/acsnano.2c00802
_version_ 1784695640234655744
author Zotev, Panaiot G.
Wang, Yue
Sortino, Luca
Severs Millard, Toby
Mullin, Nic
Conteduca, Donato
Shagar, Mostafa
Genco, Armando
Hobbs, Jamie K.
Krauss, Thomas F.
Tartakovskii, Alexander I.
author_facet Zotev, Panaiot G.
Wang, Yue
Sortino, Luca
Severs Millard, Toby
Mullin, Nic
Conteduca, Donato
Shagar, Mostafa
Genco, Armando
Hobbs, Jamie K.
Krauss, Thomas F.
Tartakovskii, Alexander I.
author_sort Zotev, Panaiot G.
collection PubMed
description [Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these properties to fabricate WS(2) double-pillar nanoantennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark-field spectroscopy, we reveal multiple Mie resonances, to which we couple WSe(2) monolayer photoluminescence and achieve Purcell enhancement and an increased fluorescence by factors up to 240 for dimer gaps of 150 nm. We introduce postfabrication atomic force microscope repositioning and rotation of dimer nanoantennas, achieving gaps as small as 10 ± 5 nm, which enables a host of potential applications, including strong Purcell enhancement of single-photon emitters and optical trapping, which we study in simulations. Our findings highlight the advantages of using transition metal dichalcogenides for nanophotonics by exploring applications enabled by their properties.
format Online
Article
Text
id pubmed-9047003
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90470032022-04-28 Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions Zotev, Panaiot G. Wang, Yue Sortino, Luca Severs Millard, Toby Mullin, Nic Conteduca, Donato Shagar, Mostafa Genco, Armando Hobbs, Jamie K. Krauss, Thomas F. Tartakovskii, Alexander I. ACS Nano [Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these properties to fabricate WS(2) double-pillar nanoantennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark-field spectroscopy, we reveal multiple Mie resonances, to which we couple WSe(2) monolayer photoluminescence and achieve Purcell enhancement and an increased fluorescence by factors up to 240 for dimer gaps of 150 nm. We introduce postfabrication atomic force microscope repositioning and rotation of dimer nanoantennas, achieving gaps as small as 10 ± 5 nm, which enables a host of potential applications, including strong Purcell enhancement of single-photon emitters and optical trapping, which we study in simulations. Our findings highlight the advantages of using transition metal dichalcogenides for nanophotonics by exploring applications enabled by their properties. American Chemical Society 2022-04-06 2022-04-26 /pmc/articles/PMC9047003/ /pubmed/35385647 http://dx.doi.org/10.1021/acsnano.2c00802 Text en © 2022 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Zotev, Panaiot G.
Wang, Yue
Sortino, Luca
Severs Millard, Toby
Mullin, Nic
Conteduca, Donato
Shagar, Mostafa
Genco, Armando
Hobbs, Jamie K.
Krauss, Thomas F.
Tartakovskii, Alexander I.
Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title_full Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title_fullStr Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title_full_unstemmed Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title_short Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
title_sort transition metal dichalcogenide dimer nanoantennas for tailored light–matter interactions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047003/
https://www.ncbi.nlm.nih.gov/pubmed/35385647
http://dx.doi.org/10.1021/acsnano.2c00802
work_keys_str_mv AT zotevpanaiotg transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT wangyue transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT sortinoluca transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT seversmillardtoby transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT mullinnic transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT conteducadonato transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT shagarmostafa transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT gencoarmando transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT hobbsjamiek transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT kraussthomasf transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions
AT tartakovskiialexanderi transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions