Cargando…
Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions
[Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these propertie...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047003/ https://www.ncbi.nlm.nih.gov/pubmed/35385647 http://dx.doi.org/10.1021/acsnano.2c00802 |
_version_ | 1784695640234655744 |
---|---|
author | Zotev, Panaiot G. Wang, Yue Sortino, Luca Severs Millard, Toby Mullin, Nic Conteduca, Donato Shagar, Mostafa Genco, Armando Hobbs, Jamie K. Krauss, Thomas F. Tartakovskii, Alexander I. |
author_facet | Zotev, Panaiot G. Wang, Yue Sortino, Luca Severs Millard, Toby Mullin, Nic Conteduca, Donato Shagar, Mostafa Genco, Armando Hobbs, Jamie K. Krauss, Thomas F. Tartakovskii, Alexander I. |
author_sort | Zotev, Panaiot G. |
collection | PubMed |
description | [Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these properties to fabricate WS(2) double-pillar nanoantennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark-field spectroscopy, we reveal multiple Mie resonances, to which we couple WSe(2) monolayer photoluminescence and achieve Purcell enhancement and an increased fluorescence by factors up to 240 for dimer gaps of 150 nm. We introduce postfabrication atomic force microscope repositioning and rotation of dimer nanoantennas, achieving gaps as small as 10 ± 5 nm, which enables a host of potential applications, including strong Purcell enhancement of single-photon emitters and optical trapping, which we study in simulations. Our findings highlight the advantages of using transition metal dichalcogenides for nanophotonics by exploring applications enabled by their properties. |
format | Online Article Text |
id | pubmed-9047003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90470032022-04-28 Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions Zotev, Panaiot G. Wang, Yue Sortino, Luca Severs Millard, Toby Mullin, Nic Conteduca, Donato Shagar, Mostafa Genco, Armando Hobbs, Jamie K. Krauss, Thomas F. Tartakovskii, Alexander I. ACS Nano [Image: see text] Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these properties to fabricate WS(2) double-pillar nanoantennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark-field spectroscopy, we reveal multiple Mie resonances, to which we couple WSe(2) monolayer photoluminescence and achieve Purcell enhancement and an increased fluorescence by factors up to 240 for dimer gaps of 150 nm. We introduce postfabrication atomic force microscope repositioning and rotation of dimer nanoantennas, achieving gaps as small as 10 ± 5 nm, which enables a host of potential applications, including strong Purcell enhancement of single-photon emitters and optical trapping, which we study in simulations. Our findings highlight the advantages of using transition metal dichalcogenides for nanophotonics by exploring applications enabled by their properties. American Chemical Society 2022-04-06 2022-04-26 /pmc/articles/PMC9047003/ /pubmed/35385647 http://dx.doi.org/10.1021/acsnano.2c00802 Text en © 2022 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Zotev, Panaiot G. Wang, Yue Sortino, Luca Severs Millard, Toby Mullin, Nic Conteduca, Donato Shagar, Mostafa Genco, Armando Hobbs, Jamie K. Krauss, Thomas F. Tartakovskii, Alexander I. Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions |
title | Transition
Metal Dichalcogenide Dimer Nanoantennas
for Tailored Light–Matter Interactions |
title_full | Transition
Metal Dichalcogenide Dimer Nanoantennas
for Tailored Light–Matter Interactions |
title_fullStr | Transition
Metal Dichalcogenide Dimer Nanoantennas
for Tailored Light–Matter Interactions |
title_full_unstemmed | Transition
Metal Dichalcogenide Dimer Nanoantennas
for Tailored Light–Matter Interactions |
title_short | Transition
Metal Dichalcogenide Dimer Nanoantennas
for Tailored Light–Matter Interactions |
title_sort | transition
metal dichalcogenide dimer nanoantennas
for tailored light–matter interactions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047003/ https://www.ncbi.nlm.nih.gov/pubmed/35385647 http://dx.doi.org/10.1021/acsnano.2c00802 |
work_keys_str_mv | AT zotevpanaiotg transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT wangyue transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT sortinoluca transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT seversmillardtoby transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT mullinnic transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT conteducadonato transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT shagarmostafa transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT gencoarmando transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT hobbsjamiek transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT kraussthomasf transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions AT tartakovskiialexanderi transitionmetaldichalcogenidedimernanoantennasfortailoredlightmatterinteractions |