Cargando…
The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness
AIMS: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047058/ https://www.ncbi.nlm.nih.gov/pubmed/34563566 http://dx.doi.org/10.1016/j.lfs.2021.119962 |
Sumario: | AIMS: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the β-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. MAIN METHODS: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. KEY FINDINGS: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. SIGNIFICANCE: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness. |
---|