Cargando…

Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study

BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Andrew, Manral, Nipun, McElhinney, Priscilla, Killekar, Aditya, Matsumoto, Hidenari, Kwiecinski, Jacek, Pieszko, Konrad, Razipour, Aryabod, Grodecki, Kajetan, Park, Caroline, Otaki, Yuka, Doris, Mhairi, Kwan, Alan C, Han, Donghee, Kuronuma, Keiichiro, Tomasino, Guadalupe Flores, Tzolos, Evangelos, Shanbhag, Aakash, Goeller, Markus, Marwan, Mohamed, Gransar, Heidi, Tamarappoo, Balaji K, Cadet, Sebastien, Achenbach, Stephan, Nicholls, Stephen J, Wong, Dennis T, Berman, Daniel S, Dweck, Marc, Newby, David E, Williams, Michelle C, Slomka, Piotr J, Dey, Damini
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047317/
https://www.ncbi.nlm.nih.gov/pubmed/35337643
http://dx.doi.org/10.1016/S2589-7500(22)00022-X
_version_ 1784695699142606848
author Lin, Andrew
Manral, Nipun
McElhinney, Priscilla
Killekar, Aditya
Matsumoto, Hidenari
Kwiecinski, Jacek
Pieszko, Konrad
Razipour, Aryabod
Grodecki, Kajetan
Park, Caroline
Otaki, Yuka
Doris, Mhairi
Kwan, Alan C
Han, Donghee
Kuronuma, Keiichiro
Tomasino, Guadalupe Flores
Tzolos, Evangelos
Shanbhag, Aakash
Goeller, Markus
Marwan, Mohamed
Gransar, Heidi
Tamarappoo, Balaji K
Cadet, Sebastien
Achenbach, Stephan
Nicholls, Stephen J
Wong, Dennis T
Berman, Daniel S
Dweck, Marc
Newby, David E
Williams, Michelle C
Slomka, Piotr J
Dey, Damini
author_facet Lin, Andrew
Manral, Nipun
McElhinney, Priscilla
Killekar, Aditya
Matsumoto, Hidenari
Kwiecinski, Jacek
Pieszko, Konrad
Razipour, Aryabod
Grodecki, Kajetan
Park, Caroline
Otaki, Yuka
Doris, Mhairi
Kwan, Alan C
Han, Donghee
Kuronuma, Keiichiro
Tomasino, Guadalupe Flores
Tzolos, Evangelos
Shanbhag, Aakash
Goeller, Markus
Marwan, Mohamed
Gransar, Heidi
Tamarappoo, Balaji K
Cadet, Sebastien
Achenbach, Stephan
Nicholls, Stephen J
Wong, Dennis T
Berman, Daniel S
Dweck, Marc
Newby, David E
Williams, Michelle C
Slomka, Piotr J
Dey, Damini
author_sort Lin, Andrew
collection PubMed
description BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm(3) or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction.
format Online
Article
Text
id pubmed-9047317
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-90473172022-04-28 Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study Lin, Andrew Manral, Nipun McElhinney, Priscilla Killekar, Aditya Matsumoto, Hidenari Kwiecinski, Jacek Pieszko, Konrad Razipour, Aryabod Grodecki, Kajetan Park, Caroline Otaki, Yuka Doris, Mhairi Kwan, Alan C Han, Donghee Kuronuma, Keiichiro Tomasino, Guadalupe Flores Tzolos, Evangelos Shanbhag, Aakash Goeller, Markus Marwan, Mohamed Gransar, Heidi Tamarappoo, Balaji K Cadet, Sebastien Achenbach, Stephan Nicholls, Stephen J Wong, Dennis T Berman, Daniel S Dweck, Marc Newby, David E Williams, Michelle C Slomka, Piotr J Dey, Damini Lancet Digit Health Article BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm(3) or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction. 2022-04 /pmc/articles/PMC9047317/ /pubmed/35337643 http://dx.doi.org/10.1016/S2589-7500(22)00022-X Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article under the CC BY-NC-ND 4.0 license.
spellingShingle Article
Lin, Andrew
Manral, Nipun
McElhinney, Priscilla
Killekar, Aditya
Matsumoto, Hidenari
Kwiecinski, Jacek
Pieszko, Konrad
Razipour, Aryabod
Grodecki, Kajetan
Park, Caroline
Otaki, Yuka
Doris, Mhairi
Kwan, Alan C
Han, Donghee
Kuronuma, Keiichiro
Tomasino, Guadalupe Flores
Tzolos, Evangelos
Shanbhag, Aakash
Goeller, Markus
Marwan, Mohamed
Gransar, Heidi
Tamarappoo, Balaji K
Cadet, Sebastien
Achenbach, Stephan
Nicholls, Stephen J
Wong, Dennis T
Berman, Daniel S
Dweck, Marc
Newby, David E
Williams, Michelle C
Slomka, Piotr J
Dey, Damini
Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title_full Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title_fullStr Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title_full_unstemmed Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title_short Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
title_sort deep learning-enabled coronary ct angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047317/
https://www.ncbi.nlm.nih.gov/pubmed/35337643
http://dx.doi.org/10.1016/S2589-7500(22)00022-X
work_keys_str_mv AT linandrew deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT manralnipun deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT mcelhinneypriscilla deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT killekaraditya deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT matsumotohidenari deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT kwiecinskijacek deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT pieszkokonrad deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT razipouraryabod deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT grodeckikajetan deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT parkcaroline deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT otakiyuka deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT dorismhairi deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT kwanalanc deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT handonghee deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT kuronumakeiichiro deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT tomasinoguadalupeflores deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT tzolosevangelos deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT shanbhagaakash deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT goellermarkus deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT marwanmohamed deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT gransarheidi deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT tamarappoobalajik deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT cadetsebastien deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT achenbachstephan deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT nichollsstephenj deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT wongdennist deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT bermandaniels deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT dweckmarc deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT newbydavide deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT williamsmichellec deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT slomkapiotrj deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy
AT deydamini deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy