Cargando…
Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study
BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047317/ https://www.ncbi.nlm.nih.gov/pubmed/35337643 http://dx.doi.org/10.1016/S2589-7500(22)00022-X |
_version_ | 1784695699142606848 |
---|---|
author | Lin, Andrew Manral, Nipun McElhinney, Priscilla Killekar, Aditya Matsumoto, Hidenari Kwiecinski, Jacek Pieszko, Konrad Razipour, Aryabod Grodecki, Kajetan Park, Caroline Otaki, Yuka Doris, Mhairi Kwan, Alan C Han, Donghee Kuronuma, Keiichiro Tomasino, Guadalupe Flores Tzolos, Evangelos Shanbhag, Aakash Goeller, Markus Marwan, Mohamed Gransar, Heidi Tamarappoo, Balaji K Cadet, Sebastien Achenbach, Stephan Nicholls, Stephen J Wong, Dennis T Berman, Daniel S Dweck, Marc Newby, David E Williams, Michelle C Slomka, Piotr J Dey, Damini |
author_facet | Lin, Andrew Manral, Nipun McElhinney, Priscilla Killekar, Aditya Matsumoto, Hidenari Kwiecinski, Jacek Pieszko, Konrad Razipour, Aryabod Grodecki, Kajetan Park, Caroline Otaki, Yuka Doris, Mhairi Kwan, Alan C Han, Donghee Kuronuma, Keiichiro Tomasino, Guadalupe Flores Tzolos, Evangelos Shanbhag, Aakash Goeller, Markus Marwan, Mohamed Gransar, Heidi Tamarappoo, Balaji K Cadet, Sebastien Achenbach, Stephan Nicholls, Stephen J Wong, Dennis T Berman, Daniel S Dweck, Marc Newby, David E Williams, Michelle C Slomka, Piotr J Dey, Damini |
author_sort | Lin, Andrew |
collection | PubMed |
description | BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm(3) or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction. |
format | Online Article Text |
id | pubmed-9047317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-90473172022-04-28 Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study Lin, Andrew Manral, Nipun McElhinney, Priscilla Killekar, Aditya Matsumoto, Hidenari Kwiecinski, Jacek Pieszko, Konrad Razipour, Aryabod Grodecki, Kajetan Park, Caroline Otaki, Yuka Doris, Mhairi Kwan, Alan C Han, Donghee Kuronuma, Keiichiro Tomasino, Guadalupe Flores Tzolos, Evangelos Shanbhag, Aakash Goeller, Markus Marwan, Mohamed Gransar, Heidi Tamarappoo, Balaji K Cadet, Sebastien Achenbach, Stephan Nicholls, Stephen J Wong, Dennis T Berman, Daniel S Dweck, Marc Newby, David E Williams, Michelle C Slomka, Piotr J Dey, Damini Lancet Digit Health Article BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm(3) or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction. 2022-04 /pmc/articles/PMC9047317/ /pubmed/35337643 http://dx.doi.org/10.1016/S2589-7500(22)00022-X Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article under the CC BY-NC-ND 4.0 license. |
spellingShingle | Article Lin, Andrew Manral, Nipun McElhinney, Priscilla Killekar, Aditya Matsumoto, Hidenari Kwiecinski, Jacek Pieszko, Konrad Razipour, Aryabod Grodecki, Kajetan Park, Caroline Otaki, Yuka Doris, Mhairi Kwan, Alan C Han, Donghee Kuronuma, Keiichiro Tomasino, Guadalupe Flores Tzolos, Evangelos Shanbhag, Aakash Goeller, Markus Marwan, Mohamed Gransar, Heidi Tamarappoo, Balaji K Cadet, Sebastien Achenbach, Stephan Nicholls, Stephen J Wong, Dennis T Berman, Daniel S Dweck, Marc Newby, David E Williams, Michelle C Slomka, Piotr J Dey, Damini Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title | Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title_full | Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title_fullStr | Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title_full_unstemmed | Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title_short | Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
title_sort | deep learning-enabled coronary ct angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047317/ https://www.ncbi.nlm.nih.gov/pubmed/35337643 http://dx.doi.org/10.1016/S2589-7500(22)00022-X |
work_keys_str_mv | AT linandrew deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT manralnipun deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT mcelhinneypriscilla deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT killekaraditya deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT matsumotohidenari deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT kwiecinskijacek deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT pieszkokonrad deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT razipouraryabod deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT grodeckikajetan deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT parkcaroline deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT otakiyuka deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT dorismhairi deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT kwanalanc deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT handonghee deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT kuronumakeiichiro deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT tomasinoguadalupeflores deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT tzolosevangelos deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT shanbhagaakash deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT goellermarkus deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT marwanmohamed deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT gransarheidi deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT tamarappoobalajik deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT cadetsebastien deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT achenbachstephan deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT nichollsstephenj deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT wongdennist deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT bermandaniels deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT dweckmarc deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT newbydavide deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT williamsmichellec deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT slomkapiotrj deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy AT deydamini deeplearningenabledcoronaryctangiographyforplaqueandstenosisquantificationandcardiacriskpredictionaninternationalmulticentrestudy |