Cargando…

DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data

[Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic...

Descripción completa

Detalles Bibliográficos
Autores principales: Colby, Sean M., Chang, Christine H., Bade, Jessica L., Nunez, Jamie R., Blumer, Madison R., Orton, Daniel J., Bloodsworth, Kent J., Nakayasu, Ernesto S., Smith, Richard D., Ibrahim, Yehia M., Renslow, Ryan S., Metz, Thomas O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047447/
https://www.ncbi.nlm.nih.gov/pubmed/35430813
http://dx.doi.org/10.1021/acs.analchem.1c05017
_version_ 1784695727986835456
author Colby, Sean M.
Chang, Christine H.
Bade, Jessica L.
Nunez, Jamie R.
Blumer, Madison R.
Orton, Daniel J.
Bloodsworth, Kent J.
Nakayasu, Ernesto S.
Smith, Richard D.
Ibrahim, Yehia M.
Renslow, Ryan S.
Metz, Thomas O.
author_facet Colby, Sean M.
Chang, Christine H.
Bade, Jessica L.
Nunez, Jamie R.
Blumer, Madison R.
Orton, Daniel J.
Bloodsworth, Kent J.
Nakayasu, Ernesto S.
Smith, Richard D.
Ibrahim, Yehia M.
Renslow, Ryan S.
Metz, Thomas O.
author_sort Colby, Sean M.
collection PubMed
description [Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step.
format Online
Article
Text
id pubmed-9047447
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90474472022-04-29 DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data Colby, Sean M. Chang, Christine H. Bade, Jessica L. Nunez, Jamie R. Blumer, Madison R. Orton, Daniel J. Bloodsworth, Kent J. Nakayasu, Ernesto S. Smith, Richard D. Ibrahim, Yehia M. Renslow, Ryan S. Metz, Thomas O. Anal Chem [Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step. American Chemical Society 2022-04-17 2022-04-26 /pmc/articles/PMC9047447/ /pubmed/35430813 http://dx.doi.org/10.1021/acs.analchem.1c05017 Text en © 2022 Battelle Memorial Institute. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Colby, Sean M.
Chang, Christine H.
Bade, Jessica L.
Nunez, Jamie R.
Blumer, Madison R.
Orton, Daniel J.
Bloodsworth, Kent J.
Nakayasu, Ernesto S.
Smith, Richard D.
Ibrahim, Yehia M.
Renslow, Ryan S.
Metz, Thomas O.
DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title_full DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title_fullStr DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title_full_unstemmed DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title_short DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
title_sort deimos: an open-source tool for processing high-dimensional mass spectrometry data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047447/
https://www.ncbi.nlm.nih.gov/pubmed/35430813
http://dx.doi.org/10.1021/acs.analchem.1c05017
work_keys_str_mv AT colbyseanm deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT changchristineh deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT badejessical deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT nunezjamier deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT blumermadisonr deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT ortondanielj deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT bloodsworthkentj deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT nakayasuernestos deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT smithrichardd deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT ibrahimyehiam deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT renslowryans deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata
AT metzthomaso deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata