Cargando…
DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data
[Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047447/ https://www.ncbi.nlm.nih.gov/pubmed/35430813 http://dx.doi.org/10.1021/acs.analchem.1c05017 |
_version_ | 1784695727986835456 |
---|---|
author | Colby, Sean M. Chang, Christine H. Bade, Jessica L. Nunez, Jamie R. Blumer, Madison R. Orton, Daniel J. Bloodsworth, Kent J. Nakayasu, Ernesto S. Smith, Richard D. Ibrahim, Yehia M. Renslow, Ryan S. Metz, Thomas O. |
author_facet | Colby, Sean M. Chang, Christine H. Bade, Jessica L. Nunez, Jamie R. Blumer, Madison R. Orton, Daniel J. Bloodsworth, Kent J. Nakayasu, Ernesto S. Smith, Richard D. Ibrahim, Yehia M. Renslow, Ryan S. Metz, Thomas O. |
author_sort | Colby, Sean M. |
collection | PubMed |
description | [Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step. |
format | Online Article Text |
id | pubmed-9047447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90474472022-04-29 DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data Colby, Sean M. Chang, Christine H. Bade, Jessica L. Nunez, Jamie R. Blumer, Madison R. Orton, Daniel J. Bloodsworth, Kent J. Nakayasu, Ernesto S. Smith, Richard D. Ibrahim, Yehia M. Renslow, Ryan S. Metz, Thomas O. Anal Chem [Image: see text] We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step. American Chemical Society 2022-04-17 2022-04-26 /pmc/articles/PMC9047447/ /pubmed/35430813 http://dx.doi.org/10.1021/acs.analchem.1c05017 Text en © 2022 Battelle Memorial Institute. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Colby, Sean M. Chang, Christine H. Bade, Jessica L. Nunez, Jamie R. Blumer, Madison R. Orton, Daniel J. Bloodsworth, Kent J. Nakayasu, Ernesto S. Smith, Richard D. Ibrahim, Yehia M. Renslow, Ryan S. Metz, Thomas O. DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data |
title | DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data |
title_full | DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data |
title_fullStr | DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data |
title_full_unstemmed | DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data |
title_short | DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data |
title_sort | deimos: an open-source tool for processing high-dimensional
mass spectrometry data |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047447/ https://www.ncbi.nlm.nih.gov/pubmed/35430813 http://dx.doi.org/10.1021/acs.analchem.1c05017 |
work_keys_str_mv | AT colbyseanm deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT changchristineh deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT badejessical deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT nunezjamier deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT blumermadisonr deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT ortondanielj deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT bloodsworthkentj deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT nakayasuernestos deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT smithrichardd deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT ibrahimyehiam deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT renslowryans deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata AT metzthomaso deimosanopensourcetoolforprocessinghighdimensionalmassspectrometrydata |