Cargando…
Retrosynthesis with attention-based NMT model and chemical analysis of “wrong” predictions
We consider retrosynthesis to be a machine translation problem. Accordingly, we apply an attention-based and completely data-driven model named Tensor2Tensor to a data set comprising approximately 50 000 diverse reactions extracted from the United States patent literature. The model significantly ou...
Autores principales: | Duan, Hongliang, Wang, Ling, Zhang, Chengyun, Guo, Lin, Li, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047528/ https://www.ncbi.nlm.nih.gov/pubmed/35494683 http://dx.doi.org/10.1039/c9ra08535a |
Ejemplares similares
-
Similarity based enzymatic retrosynthesis
por: Sankaranarayanan, Karthik, et al.
Publicado: (2022) -
Enhancing diversity in language based models for single-step retrosynthesis
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Evaluating and clustering retrosynthesis pathways with learned strategy
por: Mo, Yiming, et al.
Publicado: (2020) -
Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner
por: Sankaranarayanan, Karthik, et al.
Publicado: (2023) -
Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning
por: Toniato, Alessandra, et al.
Publicado: (2023)