Cargando…
Engineering phytosterol-based oleogels for potential application as sustainable petrolatum replacement
Phytosterol-based oleogels have been engineered in edible oils for potential applications as sustainable replacements for petrolatum. Oleogels have emerged with a crystal network structure with oil molecules trapped inside. In addition, the viscosity of highly thixotropic oleogels could be tuned by...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047561/ https://www.ncbi.nlm.nih.gov/pubmed/35492564 http://dx.doi.org/10.1039/c9ra06950j |
Sumario: | Phytosterol-based oleogels have been engineered in edible oils for potential applications as sustainable replacements for petrolatum. Oleogels have emerged with a crystal network structure with oil molecules trapped inside. In addition, the viscosity of highly thixotropic oleogels could be tuned by manipulating the concentration of phytosterols and monoglycerides, and the type of surface-active small molecules and bulk vegetable oils. Furthermore, viscous soft matter could also be tunably made with 8–20% oleogelators in olive oil with favourable water vapour occlusive and wettability properties, in addition to having good texture, and outstanding thixotropic and thermal reversibility properties. These properties are quite similar to those of commercial petrolatum. This work demonstrates that the natural phytosterol-oleogels in edible oils can be a novel source of sustainable and green replacements for petrolatum. |
---|