Cargando…
The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques
In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted in restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the extent to which carbon-based transport and industrial activity affect air quality. Ho...
Autores principales: | Wijnands, Jasper S., Nice, Kerry A., Seneviratne, Sachith, Thompson, Jason, Stevenson, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Turkish National Committee for Air Pollution Research and Control. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047632/ https://www.ncbi.nlm.nih.gov/pubmed/35506000 http://dx.doi.org/10.1016/j.apr.2022.101438 |
Ejemplares similares
-
Modelling SARS‐CoV‐2 disease progression in Australia and New Zealand: an account of an agent‐based approach to support public health decision‐making
por: Thompson, Jason, et al.
Publicado: (2022) -
Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China
por: Ayus, Ishan, et al.
Publicado: (2023) -
Global Challenges:
Opening up Chemistry, Pandemics,
and Air Pollution
por: Schymanski, Emma L.
Publicado: (2022) -
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023) -
Global air pollution exposure and poverty
por: Rentschler, Jun, et al.
Publicado: (2023)