Cargando…
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
The spiking neural network (SNN) is a possible pathway for low-power and energy-efficient processing and computing exploiting spiking-driven and sparsity features of biological systems. This article proposes a sparsity-driven SNN learning algorithm, namely backpropagation with sparsity regularizatio...
Autores principales: | Yan, Yulong, Chu, Haoming, Jin, Yi, Huan, Yuxiang, Zou, Zhuo, Zheng, Lirong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047717/ https://www.ncbi.nlm.nih.gov/pubmed/35495028 http://dx.doi.org/10.3389/fnins.2022.760298 |
Ejemplares similares
-
A Sparsity-Driven Backpropagation-Less Learning Framework Using Populations of Spiking Growth Transform Neurons
por: Gangopadhyay, Ahana, et al.
Publicado: (2021) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability
por: Fernandez-Musoles, Carlos, et al.
Publicado: (2019)