Cargando…
Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach
BACKGROUND: Although machine learning (ML) algorithms have been applied to point-of-care sepsis prognostication, ML has not been used to predict sepsis mortality in an administrative database. Therefore, we examined the performance of common ML algorithms in predicting sepsis mortality in adult pati...
Autores principales: | Park, James Yeongjun, Hsu, Tzu-Chun, Hu, Jiun-Ruey, Chen, Chun-Yuan, Hsu, Wan-Ting, Lee, Matthew, Ho, Joshua, Lee, Chien-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047761/ https://www.ncbi.nlm.nih.gov/pubmed/35416785 http://dx.doi.org/10.2196/29982 |
Ejemplares similares
-
Risk-standardized sepsis mortality map of the United States
por: Hu, Jiun-Ruey, et al.
Publicado: (2022) -
In-hospital Cardiac Arrest in Patients With Sepsis: A National Cohort Study
por: Duazo, Catherine, et al.
Publicado: (2021) -
Impact of post-sepsis cardiovascular complications on mortality in sepsis survivors: a population-based study
por: Wu, Meng-Huan, et al.
Publicado: (2019) -
Temporal trend and survival impact of infection source among patients with sepsis: a nationwide study
por: Chen, Yueh-Sheng, et al.
Publicado: (2023) -
Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis
por: Wu, Jo-Hsuan, et al.
Publicado: (2021)