Cargando…
Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network
Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047871/ https://www.ncbi.nlm.nih.gov/pubmed/35493836 http://dx.doi.org/10.3389/fneur.2022.855125 |
_version_ | 1784695818065805312 |
---|---|
author | Nigri, Anna Ferraro, Stefania Gandini Wheeler-Kingshott, Claudia A. M. Tosetti, Michela Redolfi, Alberto Forloni, Gianluigi D'Angelo, Egidio Aquino, Domenico Biagi, Laura Bosco, Paolo Carne, Irene De Francesco, Silvia Demichelis, Greta Gianeri, Ruben Lagana, Maria Marcella Micotti, Edoardo Napolitano, Antonio Palesi, Fulvia Pirastru, Alice Savini, Giovanni Alberici, Elisa Amato, Carmelo Arrigoni, Filippo Baglio, Francesca Bozzali, Marco Castellano, Antonella Cavaliere, Carlo Contarino, Valeria Elisa Ferrazzi, Giulio Gaudino, Simona Marino, Silvia Manzo, Vittorio Pavone, Luigi Politi, Letterio S. Roccatagliata, Luca Rognone, Elisa Rossi, Andrea Tonon, Caterina Lodi, Raffaele Tagliavini, Fabrizio Bruzzone, Maria Grazia |
author_facet | Nigri, Anna Ferraro, Stefania Gandini Wheeler-Kingshott, Claudia A. M. Tosetti, Michela Redolfi, Alberto Forloni, Gianluigi D'Angelo, Egidio Aquino, Domenico Biagi, Laura Bosco, Paolo Carne, Irene De Francesco, Silvia Demichelis, Greta Gianeri, Ruben Lagana, Maria Marcella Micotti, Edoardo Napolitano, Antonio Palesi, Fulvia Pirastru, Alice Savini, Giovanni Alberici, Elisa Amato, Carmelo Arrigoni, Filippo Baglio, Francesca Bozzali, Marco Castellano, Antonella Cavaliere, Carlo Contarino, Valeria Elisa Ferrazzi, Giulio Gaudino, Simona Marino, Silvia Manzo, Vittorio Pavone, Luigi Politi, Letterio S. Roccatagliata, Luca Rognone, Elisa Rossi, Andrea Tonon, Caterina Lodi, Raffaele Tagliavini, Fabrizio Bruzzone, Maria Grazia |
author_sort | Nigri, Anna |
collection | PubMed |
description | Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures. |
format | Online Article Text |
id | pubmed-9047871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90478712022-04-29 Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network Nigri, Anna Ferraro, Stefania Gandini Wheeler-Kingshott, Claudia A. M. Tosetti, Michela Redolfi, Alberto Forloni, Gianluigi D'Angelo, Egidio Aquino, Domenico Biagi, Laura Bosco, Paolo Carne, Irene De Francesco, Silvia Demichelis, Greta Gianeri, Ruben Lagana, Maria Marcella Micotti, Edoardo Napolitano, Antonio Palesi, Fulvia Pirastru, Alice Savini, Giovanni Alberici, Elisa Amato, Carmelo Arrigoni, Filippo Baglio, Francesca Bozzali, Marco Castellano, Antonella Cavaliere, Carlo Contarino, Valeria Elisa Ferrazzi, Giulio Gaudino, Simona Marino, Silvia Manzo, Vittorio Pavone, Luigi Politi, Letterio S. Roccatagliata, Luca Rognone, Elisa Rossi, Andrea Tonon, Caterina Lodi, Raffaele Tagliavini, Fabrizio Bruzzone, Maria Grazia Front Neurol Neurology Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures. Frontiers Media S.A. 2022-04-14 /pmc/articles/PMC9047871/ /pubmed/35493836 http://dx.doi.org/10.3389/fneur.2022.855125 Text en Copyright © 2022 Nigri, Ferraro, Gandini Wheeler-Kingshott, Tosetti, Redolfi, Forloni, D'Angelo, Aquino, Biagi, Bosco, Carne, De Francesco, Demichelis, Gianeri, Lagana, Micotti, Napolitano, Palesi, Pirastru, Savini, Alberici, Amato, Arrigoni, Baglio, Bozzali, Castellano, Cavaliere, Contarino, Ferrazzi, Gaudino, Marino, Manzo, Pavone, Politi, Roccatagliata, Rognone, Rossi, Tonon, Lodi, Tagliavini, Bruzzone and The RIN–Neuroimaging. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Nigri, Anna Ferraro, Stefania Gandini Wheeler-Kingshott, Claudia A. M. Tosetti, Michela Redolfi, Alberto Forloni, Gianluigi D'Angelo, Egidio Aquino, Domenico Biagi, Laura Bosco, Paolo Carne, Irene De Francesco, Silvia Demichelis, Greta Gianeri, Ruben Lagana, Maria Marcella Micotti, Edoardo Napolitano, Antonio Palesi, Fulvia Pirastru, Alice Savini, Giovanni Alberici, Elisa Amato, Carmelo Arrigoni, Filippo Baglio, Francesca Bozzali, Marco Castellano, Antonella Cavaliere, Carlo Contarino, Valeria Elisa Ferrazzi, Giulio Gaudino, Simona Marino, Silvia Manzo, Vittorio Pavone, Luigi Politi, Letterio S. Roccatagliata, Luca Rognone, Elisa Rossi, Andrea Tonon, Caterina Lodi, Raffaele Tagliavini, Fabrizio Bruzzone, Maria Grazia Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title | Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title_full | Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title_fullStr | Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title_full_unstemmed | Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title_short | Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN–Neuroimaging Network |
title_sort | quantitative mri harmonization to maximize clinical impact: the rin–neuroimaging network |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047871/ https://www.ncbi.nlm.nih.gov/pubmed/35493836 http://dx.doi.org/10.3389/fneur.2022.855125 |
work_keys_str_mv | AT nigrianna quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT ferrarostefania quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT gandiniwheelerkingshottclaudiaam quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT tosettimichela quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT redolfialberto quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT forlonigianluigi quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT dangeloegidio quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT aquinodomenico quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT biagilaura quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT boscopaolo quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT carneirene quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT defrancescosilvia quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT demichelisgreta quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT gianeriruben quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT laganamariamarcella quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT micottiedoardo quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT napolitanoantonio quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT palesifulvia quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT pirastrualice quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT savinigiovanni quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT albericielisa quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT amatocarmelo quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT arrigonifilippo quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT bagliofrancesca quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT bozzalimarco quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT castellanoantonella quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT cavalierecarlo quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT contarinovaleriaelisa quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT ferrazzigiulio quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT gaudinosimona quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT marinosilvia quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT manzovittorio quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT pavoneluigi quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT politiletterios quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT roccatagliataluca quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT rognoneelisa quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT rossiandrea quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT tononcaterina quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT lodiraffaele quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT tagliavinifabrizio quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT bruzzonemariagrazia quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork AT quantitativemriharmonizationtomaximizeclinicalimpacttherinneuroimagingnetwork |