Cargando…
Predicting perinatal health outcomes using smartphone-based digital phenotyping and machine learning in a prospective Swedish cohort (Mom2B): study protocol
INTRODUCTION: Perinatal complications, such as perinatal depression and preterm birth, are major causes of morbidity and mortality for the mother and the child. Prediction of high risk can allow for early delivery of existing interventions for prevention. This ongoing study aims to use digital pheno...
Autores principales: | Bilal, Ayesha M, Fransson, Emma, Bränn, Emma, Eriksson, Allison, Zhong, Mengyu, Gidén, Karin, Elofsson, Ulf, Axfors, Cathrine, Skalkidou, Alkistis, Papadopoulos, Fotios C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047888/ https://www.ncbi.nlm.nih.gov/pubmed/35477874 http://dx.doi.org/10.1136/bmjopen-2021-059033 |
Ejemplares similares
-
Mom2B: a study of perinatal health via smartphone application and machine learning methods
por: Bilal, A., et al.
Publicado: (2022) -
Cohort profile: the Biology, Affect, Stress, Imaging and Cognition (BASIC) study on perinatal depression in a population-based Swedish cohort
por: Axfors, Cathrine, et al.
Publicado: (2019) -
Cohort profile: the U-BIRTH study on peripartum depression and child development in Sweden
por: Tu, Hsing-Fen, et al.
Publicado: (2023) -
Alcohol consumption habits and associations with anxiety or depressive symptoms postpartum in women with high socioeconomic status in Sweden
por: Lager, Susanne, et al.
Publicado: (2022) -
Longitudinal assessment of inflammatory markers in the peripartum period by depressive symptom trajectory groups
por: Bränn, Emma, et al.
Publicado: (2022)