Cargando…
Operationalising fairness in medical AI adoption: detection of early Alzheimer’s disease with 2D CNN
OBJECTIVES: To operationalise fairness in the adoption of medical artificial intelligence (AI) algorithms in terms of access to computational resources, the proposed approach is based on a two-dimensional (2D) convolutional neural networks (CNN), which provides a faster, cheaper and accurate-enough...
Autores principales: | Heising, Luca, Angelopoulos, Spyros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047889/ https://www.ncbi.nlm.nih.gov/pubmed/35477689 http://dx.doi.org/10.1136/bmjhci-2021-100485 |
Ejemplares similares
-
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022) -
Equity in essence: a call for operationalising fairness in machine learning for healthcare
por: Wawira Gichoya, Judy, et al.
Publicado: (2021) -
Ethics as a Service: A Pragmatic Operationalisation of AI Ethics
por: Morley, Jessica, et al.
Publicado: (2021) -
AI Fairness
por: Mahoney, Trisha
Publicado: (2020) -
Operationalising AI governance through ethics-based auditing: an industry case study
por: Mökander, Jakob, et al.
Publicado: (2022)