Cargando…
An Approach Using Emerging Optical Technologies and Artificial Intelligence Brings New Markers to Evaluate Peanut Seed Quality
Seeds of high physiological quality are defined by their superior germination capacity and uniform seedling establishment. Here, it was investigated whether multispectral images combined with machine learning models can efficiently categorize the quality of peanut seedlots. The seed quality from sev...
Autores principales: | Fonseca de Oliveira, Gustavo Roberto, Mastrangelo, Clíssia Barboza, Hirai, Welinton Yoshio, Batista, Thiago Barbosa, Sudki, Julia Marconato, Petronilio, Ana Carolina Picinini, Crusciol, Carlos Alexandre Costa, Amaral da Silva, Edvaldo Aparecido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048030/ https://www.ncbi.nlm.nih.gov/pubmed/35498679 http://dx.doi.org/10.3389/fpls.2022.849986 |
Ejemplares similares
-
Fungal identification in peanuts seeds through multispectral images: Technological advances to enhance sanitary quality
por: Sudki, Julia Marconato, et al.
Publicado: (2023) -
A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms
por: Batista, Thiago Barbosa, et al.
Publicado: (2022) -
Transcripts Expressed during Germination Sensu Stricto Are Associated with Vigor in Soybean Seeds
por: Ducatti, Karina Renostro, et al.
Publicado: (2022) -
Acquisition of the physiological quality of peanut (Arachis hypogaea L.) seeds during maturation under the influence of the maternal environment
por: Okada, Maurício Hideki, et al.
Publicado: (2021) -
Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases
por: Galletti, Patrícia A., et al.
Publicado: (2020)