Cargando…
A recurrent neural network for rapid detection of delivery errors during real-time portal dosimetry
BACKGROUND AND PURPOSE: Real-time portal dosimetry compares measured images with predicted images to detect delivery errors as the radiotherapy treatment proceeds. This work aimed to investigate the performance of a recurrent neural network for processing image metrics so as to detect delivery error...
Autores principales: | Bedford, James L., Hanson, Ian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048084/ https://www.ncbi.nlm.nih.gov/pubmed/35493850 http://dx.doi.org/10.1016/j.phro.2022.03.004 |
Ejemplares similares
-
Optimisation of a composite difference metric for prompt error detection in real-time portal dosimetry of simulated volumetric modulated arc therapy
por: Bedford, James L, et al.
Publicado: (2021) -
Radiotherapy delivery error detection with electronic portal imaging device (EPID)-based in vivo dosimetry
por: Yang, Xueying, et al.
Publicado: (2023) -
In vivo Portal Imaging Dosimetry Identifies Delivery Errors in Rectal Cancer Radiotherapy on the Belly Board Device
por: Peca, Stefano, et al.
Publicado: (2017) -
A scintillation dosimeter with real‐time positional tracking information for in vivo dosimetry error detection in HDR brachytherapy
por: Tho, Daline, et al.
Publicado: (2023) -
Portal dosimetry in wedged beams
por: Spreeuw, Hanno, et al.
Publicado: (2015)