Cargando…
ExpMRC: explainability evaluation for machine reading comprehension
Achieving human-level performance on some Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, it is necessary to provide both answer prediction and its explanation to further improve the MRC system's reliab...
Autores principales: | Cui, Yiming, Liu, Ting, Che, Wanxiang, Chen, Zhigang, Wang, Shijin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048090/ https://www.ncbi.nlm.nih.gov/pubmed/35497046 http://dx.doi.org/10.1016/j.heliyon.2022.e09290 |
Ejemplares similares
-
Multilingual multi-aspect explainability analyses on machine reading comprehension models
por: Cui, Yiming, et al.
Publicado: (2022) -
Visualizing attention zones in machine reading comprehension models
por: Cui, Yiming, et al.
Publicado: (2022) -
BioADAPT-MRC: adversarial learning-based domain adaptation improves biomedical machine reading comprehension task
por: Mahbub, Maria, et al.
Publicado: (2022) -
EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability
por: Tocchetti, Andrea, et al.
Publicado: (2022) -
PathExpSurv: pathway expansion for explainable survival analysis and disease gene discovery
por: Hou, Zhichao, et al.
Publicado: (2023)