Cargando…
Atomic partial charge predictions for furanoses by random forest regression with atom type symmetry function
Furanoses that are components for many important biomolecules have complicated conformational spaces due to the flexible ring and exo-cyclic moieties. Machine learning algorithms, which require descriptors as structural inputs, can be used to efficiently compute conformational adaptive (CA) charges...
Autores principales: | Wang, Xiaocong, Gao, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048215/ https://www.ncbi.nlm.nih.gov/pubmed/35494472 http://dx.doi.org/10.1039/c9ra09337k |
Ejemplares similares
-
The Atomic Partial Charges Arboretum: Trying to See the Forest for the Trees
por: Cho, Minsik, et al.
Publicado: (2020) -
Toward the Prediction of Multi-Spin State Charges of a Heme Model by Random Forest Regression
por: Zhao, Wei, et al.
Publicado: (2020) -
Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges
por: Raček, Tomáš, et al.
Publicado: (2020) -
Linearity, symmetry, and prediction in the hydrogen atom
por: Singer, Stephanie Frank
Publicado: (2005) -
Apples to apples comparison of standardized to unstandardized principal component analysis of methods that assign partial atomic charges in molecules
por: Manz, Thomas A.
Publicado: (2022)