Cargando…
Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications
SIGNIFICANCE: Deep learning (DL) models are being increasingly developed to map sensor data to the image domain directly. However, DL methodologies are data-driven and require large and diverse data sets to provide robust and accurate image formation performances. For research modalities such as 2D/...
Autores principales: | Nizam, Navid Ibtehaj, Ochoa, Marien, Smith, Jason T., Gao, Shan, Intes, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048385/ https://www.ncbi.nlm.nih.gov/pubmed/35484688 http://dx.doi.org/10.1117/1.JBO.27.8.083016 |
Ejemplares similares
-
Monte Carlo method for assessment of a multimodal insertable biosensor
por: Fine, Jesse, et al.
Publicado: (2022) -
Two-step verification method for Monte Carlo codes in biomedical optics applications
por: Sassaroli, Angelo, et al.
Publicado: (2022) -
MCCL: an open-source software application for Monte Carlo simulations of radiative transport
por: Hayakawa, Carole K., et al.
Publicado: (2022) -
Framework for denoising Monte Carlo photon transport simulations using deep learning
por: Raayai Ardakani, Matin, et al.
Publicado: (2022) -
History of Monte Carlo modeling of light transport in tissues using mcml.c
por: Jacques, Steven L.
Publicado: (2022)