Cargando…
A recyclable heterogeneous–homogeneous–heterogeneous NiO/AlOOH catalysis system for hydrocarboxylation of acetylene to acrylic acid
Concerns about the high-valued utilization of coal- and natural gas-based acetylene has provided particular impetus for exploration of acrylic acid (AA) production via one-step hydrocarboxylation reaction. Motivated by simple recovery, recycling and reuse of the catalyst, we report a high-performanc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048467/ https://www.ncbi.nlm.nih.gov/pubmed/35494711 http://dx.doi.org/10.1039/c9ra09737f |
Sumario: | Concerns about the high-valued utilization of coal- and natural gas-based acetylene has provided particular impetus for exploration of acrylic acid (AA) production via one-step hydrocarboxylation reaction. Motivated by simple recovery, recycling and reuse of the catalyst, we report a high-performance NiO/AlOOH catalyst with AA space-time-yield of 412 g(AA) g(cat.)(−1) h(−1), obtainable by a simple incipient wetness impregnation method. Detailed kinetic and controlled experiments confirmed that nickel species on such a solid catalyst provide a heterogeneous–homogeneous–heterogeneous catalytic cycle where the chelates formed between CO and leached nickel act as the active species. The thorough recovery of leached nickel species improves the catalyst stability greatly. These preliminary findings indicate further prospects for new heterogeneous catalyst design in traditional homogeneous catalytic systems. |
---|