Cargando…
MultiBaC: an R package to remove batch effects in multi-omic experiments
MOTIVATION: Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics technologies. However, multi-omic datasets may combine data obtained in different batche...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048667/ https://www.ncbi.nlm.nih.gov/pubmed/35238331 http://dx.doi.org/10.1093/bioinformatics/btac132 |
Sumario: | MOTIVATION: Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics technologies. However, multi-omic datasets may combine data obtained in different batches where omics type and batch are often confounded. Moreover, systematic biases may be introduced without notice during data acquisition, which creates a hidden batch effect. Current methods fail to address batch effect correction in these cases. RESULTS: In this article, we introduce the MultiBaC R package, a tool for batch effect removal in multi-omics and hidden batch effect scenarios. The package includes a diversity of graphical outputs for model validation and assessment of the batch effect correction. AVAILABILITY AND IMPLEMENTATION: MultiBaC package is available on Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/MultiBaC.html) and GitHub (https://github.com/ConesaLab/MultiBaC.git). The data underlying this article are available in Gene Expression Omnibus repository (accession numbers GSE11521, GSE1002, GSE56622 and GSE43747). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|